Efficacy of Mentha aquatica L. Essential Oil (Linalool/Linalool Acetate Chemotype) against Insect Vectors and Agricultural Pests
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PRIN 2017CBNCYT
Ministero dell'Università e della Ricerca (Italy)
PubMed
37111390
PubMed Central
PMC10143930
DOI
10.3390/ph16040633
PII: ph16040633
Knihovny.cz E-zdroje
- Klíčová slova
- Culex quinquefasciatus, Metopolophium dirhodum, Musca domestica, Spodoptera littoralis, Tetranychus urticae, bio-insecticide, bio-pesticide,
- Publikační typ
- časopisecké články MeSH
In recent years, agrochemical industries have been focused on the development of essential oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of biological activities, and some of their EOs showed good potential as pesticidal agents. In this regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults, Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 µL L-1, 4.9 ± 0.8 mL L-1, 18.5 ± 2.1 µg larvae-1, and 3.3 ± 0.5 mL L-1, respectively. On the contrary, Musca domestica L. adults and 3rd instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50 or LD50: 71.4 ± 7.2 µg adult-1, 79.4 ± 5.2 µL L-1, 44.2 ± 5.8 µg larvae-1, respectively). The results obtained in this work demonstrated that various insects and pests could be differently sensible to the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel ingredients of botanical insecticides and pesticides.
Zobrazit více v PubMed
Deschamps C., Zanatta J.L., Bizzo H.R., Oliveira M.D.C., Roswalka L.C. Seasonal evaluation of essential oil yield of mint species. Ciênc. Agrotecnol. 2008;32:725–730. doi: 10.1590/S1413-70542008000300004. DOI
Ferhat M., Erol E., Beladjila K.A., Çetintaş Y., Duru M.E., Öztürk M., Kabouche A., Kabouche Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017;55:324–329. doi: 10.1080/13880209.2016.1238488. PubMed DOI PMC
Gethaun Z., Asres K., Mazumder A., Bucar F. Essential oil composition, antibacterial and antioxidant activities of Mentha aquatica growing in Ethiopia. Ethiop. Pharm. J. 2008;26:9–16.
Kumar P., Mishra S., Malik A., Satya S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod. 2011;34:802–817. doi: 10.1016/j.indcrop.2011.02.019. DOI
Andro A.R., Boz I., Zamfirache M.M., Burzo I. Chemical composition of essential oils from Mentha aquatica L. at different moments of the ontogenetic cycle. J. Med. Plant Res. 2013;7:470–473.
Jäger A.K., Almqvist J.P., Vangsøe S.A.K., Stafford G.I., Adsersen A., van Staden J. Compounds from Mentha aquatica with affinity to the GABA-benzodiazepine receptor. S. Afr. J. Bot. 2007;73:518–521. doi: 10.1016/j.sajb.2007.04.061. DOI
De Oliveira Braga L.E., da Silva G.G., de Oliveira Sousa I.M., de Oliveira E.C.S., Jorge M.P., Monteiro K.M., Sedano T.C., Foglio M.A., Ruiz A.L.T.G. Gastrointestinal effects of Mentha aquatica L. essential oil. Inflammopharmacology. 2022;30:2127–2137. doi: 10.1007/s10787-022-00989-x. PubMed DOI
Olsen H.T., Stafford G.I., van Staden J., Christensen S.B., Jäger A.K. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J. Ethnopharmacol. 2008;117:500–502. doi: 10.1016/j.jep.2008.02.015. PubMed DOI
Nouri A., Yaraki M.T., Lajevardi A., Rezaei Z., Ghorbanpour M., Tanzifi M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun. 2020;35:100252. doi: 10.1016/j.colcom.2020.100252. DOI
Pereira O.R., Macias R.I., Domingues M.R., Marin J.J., Cardoso S.M. Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants. 2019;8:267. doi: 10.3390/antiox8080267. PubMed DOI PMC
Dhifi W., Litaiem M., Jelali N., Hamdi N., Mnif W. Identification of a new chemotye of the plant Mentha aquatica grown in Tunisia: Chemical composition, antioxidant and biological activities of its essential oil. J. Essent. Oil Bear. Plants. 2011;14:320–328. doi: 10.1080/0972060X.2011.10643941. DOI
Djamila B., Zohra K.F., Lahcene K., Zohra R.F. Drying methods affect the extracts and essential oil of Mentha aquatica L. Food Biosci. 2021;41:101007. doi: 10.1016/j.fbio.2021.101007. DOI
Esmaeili A., Rustaiyan A., Masoudi S., Nadji K. Composition of the essential oils of Mentha aquatica L. and Nepeta meyeri Benth. from Iran. J. Essent. Oil Res. 2006;18:263–265. doi: 10.1080/10412905.2006.9699082. DOI
Karami H., Rasekh M., Darvishi Y., Khaledi R. Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. J. Essent. Oil Bear. Plants. 2017;20:1131–1136. doi: 10.1080/0972060X.2017.1371647. DOI
Zaks A., Davidovich-Rikanati R., Bar E., Inbar M., Lewinsohn E. Biosynthesis of linalyl acetate and other terpenes in lemon mint (Mentha aquatica var. citrata, Lamiaceae) glandular trichomes. Isr. J. Plant Sci. 2008;56:233–244. doi: 10.1560/IJPS.56.3.233. DOI
Chengala L., Singh N. Botanical pesticides—A major alternative to chemical pesticides: A review. Int. J. Life Sci. 2017;5:722–729.
Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI
Kavallieratos N.G., Boukouvala M.C., Ntalaka C.T., Skourti A., Nika E.P., Maggi F., Spinozzi E., Mazzara E., Petrelli R., Lupidi G., et al. Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity. Entomol. Gen. 2021;41:385–414. doi: 10.1127/entomologia/2021/1255. DOI
Ricupero M., Biondi A., Cincotta F., Condurso C., Palmeri V., Verzera A., Zappalà L., Campolo O. Bioactivity and physico-chemistry of garlic essential oil nanoemulsion in tomato. Entomol. Gen. 2022;1127:921–930. doi: 10.1127/entomologia/2022/1553. DOI
Desneux N., Decourtye A., Delpuech J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007;52:81–106. doi: 10.1146/annurev.ento.52.110405.091440. PubMed DOI
Menail A.H., Boutefnouchet-Bouchema W.F., Haddad N., Taning N.T.C., Smagghe G., Loucif-Ayad W. Effects of thiamethoxam and spinosad on the survival and hypopharyngeal glands of the African honey bee (Apis mellifera intermissa) Entomol. Gen. 2020;40:207–215. doi: 10.1127/entomologia/2020/0796. DOI
Yadav I.C., Devi N.L. Pesticides classification and its impact on human and environment. Environ. Sci. Eng. 2017;6:140–158.
Baweja P., Kumar S., Kumar G. Fertilizers and pesticides: Their impact on soil health and environment. In: Cham P., Kumar S., Kumar G., editors. Soil Health. Springer; Cham, Switzerland: 2020. pp. 265–285.
Giunti G., Benelli G., Palmeri V., Laudani F., Ricupero M., Ricciardi R., Maggi F., Lucchi A., Guedes R.N.C., Desneux N., et al. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control. 2022;176:105071. doi: 10.1016/j.biocontrol.2022.105071. DOI
Perinelli D.R., Pavela R., Bonacucina G., Baldassarri C., Spinozzi E., Torresi J., Petrelli R., Morshedloo M.R., Maggi F., Benelli G., et al. Development, characterization, insecticidal and sublethal effects of Bunium persicum and Ziziphora clinopodioides-based essential oil nanoemulsions on Culex quinquefasciatus. Ind. Crops Prod. 2022;186:115249. doi: 10.1016/j.indcrop.2022.115249. DOI
Giordani C., Spinozzi E., Baldassarri C., Ferrati M., Cappellacci L., Santibañez Nieto D., Pavela R., Ricciardi R., Benelli G., Petrelli R., et al. Insecticidal Activity of Four Essential Oils Extracted from Chilean Patagonian Plants as Potential Organic Pesticides. Plants. 2022;11:2012. doi: 10.3390/plants11152012. PubMed DOI PMC
Wandjou J.G.N., Baldassarri C., Ferrati M., Maggi F., Pavela R., Tsabang N., Petrelli R., Ricciardi R., Desneux N., Benelli G. Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths. Plants. 2022;11:2353. doi: 10.3390/plants11182353. PubMed DOI PMC
Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI
Kavallieratos N.G., Nika E.P., Skourti A., Xefteri D.N., Cianfaglione K., Perinelli D.R., Spinozzi E., Bonacucina G., Canale A., Benelli G., et al. Piperitenone oxide-rich Mentha longifolia essential oil and its nanoemulsion to manage different developmental stages of insect and mite pests attacking stored wheat. Ind. Crops Prod. 2022;178:114600. doi: 10.1016/j.indcrop.2022.114600. DOI
Van Den Dool H., Kratz P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chrom. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Taheri-Garavand A., Mumivand H., Fatahi S., Nasiri A., Omid M. Modeling the kinetics of essential oil content and main constituents of mint (Mentha aquatica L.) leaves during thin-layer drying process using response surface methodology. J. Food Process. 2021;45:e15515. doi: 10.1111/jfpp.15515. DOI
Bozin B., Mimica-Dukic N., Anackov G., Zlatkovic B., Igic R. Variability of Content and Composition of Mentha aquatica L. (Lamiaceae) Essential Oil in Different Phenophases. J. Essent. Oil-Bear. Plants. 2006;9:223–229. doi: 10.1080/0972060X.2006.10643495. DOI
Jerkovic I., Mastelic J. Composition of free and glycosidically bound volatiles of Mentha aquatica L. Croat. Chem. Acta. 2001;74:431–439.
Malingré T.M., Maarse H. Composition of the essential oil of Mentha aquatica. Phytochemistry. 1974;13:1531–1535. doi: 10.1016/0031-9422(74)80322-5. DOI
Mimica-Dukić N., Božin B., Soković M., Mihajlović B., Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003;69:413–419. PubMed
Atsbaha Zebelo S., Bertea C.M., Bossi S., Occhipinti A., Gnavi G., Maffei M.E. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS ONE. 2011;6:e17195. doi: 10.1371/journal.pone.0017195. PubMed DOI PMC
Murray M.J., Hefendehl F.W. Changes in monoterpene composition of Mentha aquatica produced by gene substitution from M. arvensis. Phytochemistry. 1972;11:2469–2474. doi: 10.1016/S0031-9422(00)88519-2. DOI
Murray M.J., Lincoln D.E. Oil composition of Mentha aquatica-M. longifolia F1 hybrids and M. dumetorum. Euphytica. 1972;21:337–343. doi: 10.1007/BF00036774. DOI
Pavela R., Kaffkova K., Kumšta M. Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus say (Diptera: Culicidae) Plant Prot. Sci. 2014;50:36–42. doi: 10.17221/48/2013-PPS. DOI
Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.) Phytother. Res. 2008;22:274–278. doi: 10.1002/ptr.2300. PubMed DOI
Choi W.I., Lee S.G., Park H.M., Ahn Y.J. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) J. Econ. Entomol. 2004;97:553–558. doi: 10.1603/0022-0493-97.2.553. PubMed DOI
Pandey S.K., Tandon S., Ahmad A., Singh A.K., Tripathi A.K. Structure–activity relationships of monoterpenes and acetyl derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag. Sci. 2013;69:1235–1238. doi: 10.1002/ps.3488. PubMed DOI
Li A.S., Iijima A., Huang J., Li Q.X., Chen Y. Putative mode of action of the monoterpenoids linalool, methyl eugenol, estragole, and citronellal on ligand-gated ion channels. Engineering. 2020;6:541–545. doi: 10.1016/j.eng.2019.07.027. PubMed DOI PMC
Pajaro-Castro N., Caballero-Gallardo K., Olivero-Verbel J. Neurotoxic effects of linalool and β-pinene on Tribolium castaneum Herbst. Molecules. 2017;22:2052. doi: 10.3390/molecules22122052. PubMed DOI PMC
Campos E.V., Proença P.L., Oliveira J.L., Bakshi M., Abhilash P.C., Fraceto L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019;105:483–495. doi: 10.1016/j.ecolind.2018.04.038. DOI
Praveena A., Sanjayan K.P. Inhibition of acetylcholinesterase in three insects of economic importance by linalool, a monoterpene phytochemical. Insect Pest Manag. Curr. Scenario. 2011;2010:240–345.
Cavanagh H.M.A., Wilkinson J.M. Biological Activities of Lavender Essential Oil. Phyther. Res. 2002;16:301–308. doi: 10.1002/ptr.1103. PubMed DOI
Lahlou M. Essential oils and fragrance compounds: Bioactivity and mechanisms of action. Flavour Fragr. J. 2004;19:159–165. doi: 10.1002/ffj.1288. DOI
Tong F., Coats J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Phys. 2010;98:317–324. doi: 10.1016/j.pestbp.2010.07.003. DOI
Ottai M.E.S., Ahmed S.S., Din M.M.E. Genetic variability among some quantitative characters, insecticidal activity and essential oil composition of two Egyptian and French sweet basil varieties. Aust. J. Basic Appl. Sci. 2012;6:185–192.
Hossain F., Lacroix M., Salmieri S., Vu K., Follett P.A. Basil oil fumigation increases radiation sensitivity in adult Sitophilus oryzae (Coleoptera: Curculionidae) J. Stored Prod. Res. 2014;59:108–112. doi: 10.1016/j.jspr.2014.06.003. DOI
Ling Chang C., Kyu Cho I., Li Q.X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 2009;102:203–209. doi: 10.1603/029.102.0129. PubMed DOI
Vicenço C.B., Silvestre W.P., Lima T.S., Pauletti G.F. Insecticidal activity of Cinnamomum camphora Ness and Eberm var. linaloolifera Fujita leaf essential oil and linalool against Anticarsia gemmatalis. J. Essent. Oil Res. 2021;33:601–609. doi: 10.1080/10412905.2021.1937353. DOI
Vicenço C.B., Silvestre W.P., Pauletti G.F., de Barros N.M., Schwambach J. Cinnamomum camphora var. linaloolifera essential oil on pest control: Its effect on Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) Res. Soc. Dev. 2021;10:e45710716216. doi: 10.33448/rsd-v10i7.16216. DOI
Khani A., Rahdari T. Chemical composition and insecticidal activity of essential oil from Coriandrum sativum seeds against Tribolium confusum and Callosobruchus maculatus. Int. Sch. Res. Notices. 2012;2012:263517. doi: 10.5402/2012/263517. PubMed DOI PMC
Ayvaz A., Sagdic O., Karaborklu S., Ozturk I. Insecticidal activity of the essential oils from different plants against three stored-product insects. J. Insect Sci. 2010;10:21. doi: 10.1673/031.010.2101. PubMed DOI PMC
Cheng J., Yang K., Zhao N.N., Wang X.G., Wang S.Y., Liu Z.L. Composition and insecticidal activity of the essential oil of Cananga odorata leaves against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) J. Med. Plant Res. 2012;6:3568–3572.
Pavela R., Ferrati M., Spinozzi E., Maggi F., Petrelli R., Rakotosaona R., Ricciardi R., Benelli G. The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest. Pharmaceuticals. 2022;15:1511. doi: 10.3390/ph15121511. PubMed DOI PMC
WHO . Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides. WHO; Geneva, Switzerland: 1996. CTD/WHOPES/IC/96.1.
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Probit Analysis. Cambridge University Press; London, UK: 1971.