Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36145754
PubMed Central
PMC9505984
DOI
10.3390/plants11182353
PII: plants11182353
Knihovny.cz E-zdroje
- Klíčová slova
- Aframomum citratum, Culex quinquefasciatus, Culicidae, Monodora myristica, Musca domestica, Muscidae, Noctuidae, Spodoptera littoralis, Xylopia aethiopica, geraniol, p-cymene, sabinene, α-phellandrene, α-pinene, β-pinene,
- Publikační typ
- časopisecké články MeSH
Recently, spices have attracted the attention of scientists and agrochemical companies for their potential as insecticidal and acaricidal agents, and even as repellents to replace synthetic compounds that are labeled with detrimental impacts on environment and human and animal health. In this framework, the aim of this study was to evaluate the insecticidal potential of the essential oils (EOs) obtained from three Cameroonian aromatic plants, namely Monodora myristica (Gaertn.) Dunal, Xylopia aethiopica (Dunal) A. Rich., and Aframomum citratum (J. Pereira) K. Schum. They were produced by hydrodistillation, with yields of 3.84, 4.89, and 0.85%, respectively. The chemical composition was evaluated by GC-MS analysis. The EOs and their major constituents (i.e., geraniol, sabinene, α-pinene, p-cymene, α-phellandrene, and β-pinene) were tested against the polyphagous moth pest, i.e., Spodoptera littoralis (Boisd.), the common housefly, Musca domestica L., and the filariasis and arbovirus mosquito vector, Culex quinquefasciatus Say. Our results showed that M. myristica and X. aethiopica EOs were the most effective against M. domestica adults, being effective on both males (22.1 µg adult-1) and females (LD50: 29.1 µg adult-1). The M. myristica EO and geraniol showed the highest toxicity on S. littoralis, with LD50(90) values of 29.3 (123.5) and 25.3 (83.2) µg larva-1, respectively. Last, the EOs from M. myristica and X. aethiopica, as well as the major constituents p-cymene and α-phellandrene, were the most toxic against C. quinquefasciatus larvae. The selected EOs may potentially lead to the production of cheap and effective botanical insecticides for African smallholders, although the development of effective formulations, a safety evaluation, and an in-depth study of their efficacy on different insect species are needed.
Chemistry Interdisciplinary Project School of Pharmacy University of Camerino 62032 Camerino Italy
Crop Research Institute Drnovska 507 161 06 Prague 6 Czech Republic
Department of Animal Biology University of Dschang Dschang Cameroon
Zobrazit více v PubMed
De La Torre J.E., Gassara F., Kouassi A.P., Brar S.K., Belkacemi K. Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 2017;57:1078–1088. doi: 10.1080/10408398.2013.858235. PubMed DOI
Scott I.M., Jensen H.R., Philogène B.J.R., Arnason J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008;7:65–75. doi: 10.1007/s11101-006-9058-5. DOI
Ashouri S., Shayesteh N. Insecticidal activities of two powdered spices, black pepper and red pepper on adults of Rhyzopertha dominica (F.) and Sitophilus granaries (L.) Munis Entomol. Zool. J. 2010;5:600–607.
Devi K.C., Devi S.S. Insecticidal and oviposition deterrent properties of some spices against coleopteran beetle, Sitophilus oryzae. J. Food Sci. Technol. 2013;50:600–604. doi: 10.1007/s13197-011-0377-1. PubMed DOI PMC
Benelli G., Pavela R., Petrelli R., Cappellacci L., Bartolucci F., Canale A., Maggi F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind. Crops Prod. 2019;134:26–32. doi: 10.1016/j.indcrop.2019.03.055. DOI
Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
da Silva I.M., Zanuncio J.C., Brügger B.P., Soares M.A., Zanuncio A.J.V., Wilcken C.F., de Souza Tavares W., Serrão J.E., Sediyama C.S. Selectivity of the botanical compounds to the pollinators Apis mellifera and Trigona hyalinata (Hymenoptera: Apidae) Sci. Rep. 2020;10:4820. doi: 10.1038/s41598-020-61469-2. PubMed DOI PMC
Sánchez-Gómez S., Pagán R., Pavela R., Mazzara E., Spinozzi E., Marinelli O., Zeppa L., Morshedloo M.R., Maggi F., Canale A., et al. Lethal and sublethal effects of essential oil-loaded zein nanocapsules on a zoonotic disease vector mosquito, and their non-target impact. Ind. Crops Prod. 2022;176:114413. doi: 10.1016/j.indcrop.2021.114413. DOI
Ribeiro A.V., de Sá Farias E., Santos A.A., Filomeno C.A., dos Santos I.B., Barbosa L.C.A., Picanço M.C. Selection of an essential oil from Corymbia and Eucalyptus plants against Ascia monuste and its selectivity to two non-target organisms. Crop Prot. 2018;110:207–213. doi: 10.1016/j.cropro.2017.08.014. DOI
Kavallieratos N.G., Boukouvala M.C., Ntalaka C.T., Skourti A., Nika E.P., Maggi F., Spinozzi E., Mazzara E., Petrelli R., Lupidi G., et al. Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity. Entomol. Gen. 2021;41:385–414. doi: 10.1127/entomologia/2021/1255. DOI
Benelli G., Pavela R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018;179:47–54. doi: 10.1016/j.actatropica.2017.12.025. PubMed DOI
Benelli G., Pavela R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018;117:382–392. doi: 10.1016/j.indcrop.2018.02.072. DOI
Benelli G., Maggi F., Canale A., Mehlhorn H. Lyme disease is on the rise–How about tick repellents? A global view. Entomol. Gen. 2019;39:61–72. doi: 10.1127/entomologia/2019/0787. DOI
Marsin A.M., Muhamad I.I., Anis S.N.S., Lazim N.A.M., Ching L.W., Dolhaji N.H. Essential oils as insect repellent agents in food packaging: A review. Eur. Food Res. Technol. 2020;246:1519–1532. doi: 10.1007/s00217-020-03511-1. DOI
Galland C., Glesner V., Verheggen F. Laboratory and field evaluation of a combination of attractants and repellents to control Drosophila suzukii. Entomol. Gen. 2020;40:263–272. doi: 10.1127/entomologia/2020/1035. DOI
Dunan L., Malanga T., Bearez P., Benhamou S., Monticelli L.S., Desneux N., Michel T., Lavoir A.V. Biopesticide evaluation from lab to greenhouse scale of essential oils used against Macrosiphum euphorbiae. Agriculture. 2021;11:867. doi: 10.3390/agriculture11090867. DOI
Shah F.M., Razaq M., Ali Q., Ali A., Shad S.A., Aslam M., Hardy I.C.W. Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol. Gen. 2020;40:157–172. doi: 10.1127/entomologia/2020/0904. DOI
Verheggen F., Barrès B., Bonafos R., Al E. Producing sugar beets without neonicotinoids: An evaluation of alternatives for the management of viruses-transmitting aphids. Entomol. Gen. 2022;42:491–498. doi: 10.1127/entomologia/2022/1511. DOI
Eddleston M., Eyer P., Worek F., Mohamed F., Senarathna L., Von Meyer L., Juszczak E., Hittarage A., Azhar S., Dissanayake W., et al. Differences between organophosphorus insecticides in human self-poisoning: A prospective cohort study. Lancet. 2005;366:1452–1459. doi: 10.1016/S0140-6736(05)67598-8. PubMed DOI
Agiriga A., Siwela M. Monodora myristica (Gaertn.) Dunal: A plant with multiple food, health and medicinal applications: A review. Am. J. Food Technol. 2017;12:271–284. doi: 10.3923/ajft.2017.271.284. DOI
Massodi M.L.E., Mime L.C., Fogang H.P.D., Djikeng F.T., Karuna M.S.L., Womeni H.M. Chemical composition and antioxidant activity of Syzygium aromaticum and Monodora myristica essential oils from Cameroon. J. Food Stab. 2018:1–13.
Asekun O.T., Adeniyi B.A. Antimicrobial and cytotoxic activities of the fruit essential oil of Xylopia aethiopica from Nigeria. Fitoterapia. 2004;75:368–370. doi: 10.1016/j.fitote.2003.12.020. PubMed DOI
Keita B., Sidibé L., Figueredo G., Chalchat J.-C. Chemical composition of the essential oil of Xylopia aethiopica (Dunal) A. ch. from Mali. J. Essent. Oil Res. 2003;15:267–269. doi: 10.1080/10412905.2003.9712139. DOI
Ijeh I.I., Omodamiro O.D., Nwanna I.J. Antimicrobial effects of aqueous and ethanolic fractions of two spices, Ocimum gratissimum and Xylopia aethiopica. Afr. J. Biotechnol. 2005;4:953–956.
Adaramoye O.A., Okiti O.O., Farombi E.O. Dried fruit extract from Xylopia aethiopica (Annonaceae) protects Wistar albino rats from adverse effects of whole body radiation. Exp. Toxicol. Pathol. 2011;63:635–643. doi: 10.1016/j.etp.2010.05.005. PubMed DOI
Sylvie C.M.D., Jean-De-Dieu T., Guy S.S.N., Pierre T., Jules-Roger K. Chemical composition and antimicrobial activity of essential oils from Aframomum citratum, Aframomum daniellii, Piper capense and Monodora myristica. J. Med. Plants Res. 2019;13:173–187. doi: 10.5897/JMPR2019.6768. DOI
Okonkwo E.U., Okoye W.I. The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grains against infestation by Callosobruchus maculatus (Fabricus) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. Int. J. Pest Manag. 1996;42:143–146. doi: 10.1080/09670879609371985. DOI
Kouninki H., Haubruge E., Noudjou F.E., Lognay G., Malaisse F., Ngassoum M.B., Goudoum A., Mapongmetsem P.M., Ngamo L.S., Hance T. Potential use of essential oils from Cameroon applied as fumigant or contact insecticides against Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) Commun. Agric. Appl. Biol. Sci. 2005;70:787–792. PubMed
Kouninki H., Hance T., Noudjou F.A., Lognay G., Malaisse F., Ngassoum M.B., Mapongmetsem P.M., Ngamo L.S.T., Haubruge E. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. J. Appl. Entomol. 2007;131:269–274. doi: 10.1111/j.1439-0418.2007.01154.x. DOI
Babarinde S.A., Adeyemo Y.A. Toxic and repellent properties of Xylopia aethiopica (Dunal) A. Richard on Tribolium castaneum Herbst infesting stored millets, Pennisetum glaucum (L.) R. Br. Arch. Phytopathol. Plant Prot. 2010;43:810–816. doi: 10.1080/03235400802246952. DOI
Habiba K., Thierry H., Jules D., Félicité N., Georges L., François M., Benoit N.M., Marie M.P., Leonard N.T., Eric H. Persistent effect of a preparation of essential oil from Xylopia aethiopica against Callosobruchus maculates (Coleoptera, Bruchidae) Afr. J. Agric. Res. 2010;5:1881–1888.
Nguemtchouin M.M.G., Ngassoum M.B., Ngamo L.S.T., Gaudu X., Cretin M. Insecticidal formulation based on Xylopia aethiopica essential oil and kaolinite clay for maize protection. Crop Prot. 2010;29:985–991. doi: 10.1016/j.cropro.2010.06.007. DOI
Salama H.S., Dimetry N.Z., Salem S.A. On the host preference and biology of the cotton leaf worm Spodoptera littoralis Bois. Z. Für Angew. Entomol. 1971;67:261–266. doi: 10.1111/j.1439-0418.1971.tb02122.x. DOI
Wilke A.B.B., Beier J.C., Benelli G. Filariasis vector control down-played due to the belief the drugs will be enough–not true! Entomol. Gen. 2020;40:15–24. doi: 10.1127/entomologia/2019/0776. DOI
Neupane S., Nayduch D. Effects of habitat and sampling time on bacterial community composition and diversity in the gut of the female house fly, Musca domestica Linnaeus (Diptera: Muscidae) Med. Vet. Entomol. 2022:1–9. doi: 10.1111/mve.12581. PubMed DOI
Koudou J., Ossibi A.W.E., Aklikokou K., Abenna A.A., Gbeassor M., Bessiere J.M. Chemical composition and hypotensive effects of essential oil of Monodora myristica Gaertn. J. Biol. Sci. 2007;7:937–942. doi: 10.3923/jbs.2007.937.942. DOI
Owokotomo I.A., Ekundayo O. Comparative study of the essential oils of Monodora myristica from Nigeria. Eur. Chem. Bull. 2012;1:263–265. doi: 10.17628/ECB.2012.1.263. DOI
Bakarnga-Via I., Hzounda J.B., Fokou P.V.T., Tchokouaha L.R.Y., Gary-Bobo M., Gallud A., Garcia M., Walbadet L., Secka Y., Dongmo P.M.J., et al. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon. BMC Complement. Altern. Med. 2014;14:125. doi: 10.1186/1472-6882-14-125. PubMed DOI PMC
Konan N., Kouame B.A., Mamyrbekova-Bekro J.A., Nemlin J., Yves-Alain B. Chemical composition and antioxidant activities of essential oils of Xylopia aethiopica (dunal) a. rich. Eur. J. Sci. Res. 2009;37:311–318.
Yasser S. Variation in Chemical Composition of Essential Oil of Ferulago angulata Collected from West Parts of Iran. Pharmaceut. Sci. 2016;22:16–21. doi: 10.15171/PS.2016.04. DOI
da Silva R.O.M., Castro J.W.G., Junior O.d.M.D., de Araújo A.C.J., Leandro M.K.D.N.S., Costa R.J.O., Pinto L.L., Leandro L.M.G., da Silva L.E., Do Amaral W., et al. Photoinduced antibacterial activity of the essential oils from Eugenia brasiliensis lam and Piper mosenii C. DC. by blue led light. Antibiotics. 2019;8:242. doi: 10.3390/antibiotics8040242. PubMed DOI PMC
Sola P., Mvumi B.M., Ogendo J.O., Mponda O., Kamanula J.F., Nyirenda S.P., Belmain S.R., Stevenson P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014;6:369–384. doi: 10.1007/s12571-014-0343-7. DOI
Stevenson P.C., Isman M.B., Belmain S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crops Prod. 2017;110:2–9. doi: 10.1016/j.indcrop.2017.08.034. DOI
Ito E.E., Ighere E.J. Bio-insecticidal potency of five plant extracts against Cowpea Weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L) Jordan J. Biol. Sci. 2017;10:317–322.
Owolabi M.S., Oladimeji M.O., Lajide L., Singh G., Marimuthu P., Isidorov V.A. Bioactivity of three plant derived essential oils against the maize weevils Sitophilus zeamais (Motschulsky) and Cowpea Weevils Callosobruchus maculatus (Fabricius) Electron. J. Environ. Agric. Food Chem. 2009;8:828–835.
Nwosu L.C., Obi O.A., Azoro V.A., Dialoke S.A., Onah E., Zakka U., Azeez O.M., Eluwa A.N., Uloma A., Ukpai K.U., et al. The efficacy of the plant extracts of Afrostyrax kamerunensis, Monodora myristica, Moringa oleifera and Azadirachta indica against the infestation of the leather beetle, Dermestes maculatus De Geer in smoked African mud catfish, Clarias gariepinus Burchell. Jordan J. Biol. Sci. 2018;11:511–515.
Ntonifor N.N., Mueller-Harvey I., Van Emden H.F., Brown R.H. Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae) Int. J. Trop. Insect Sci. 2006;26:78–85. doi: 10.1079/IJT2006104. DOI
Pavela R., Maggi F., Petrelli R., Cappellacci L., Buccioni M., Palmieri A., Canale A., Benelli G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020;136:111037. doi: 10.1016/j.fct.2019.111037. PubMed DOI
Bello M.O., Adekunle A.S., Oyekunle J.A.O., Yusuf T.A. Evaluation of the fixed oil of two commonly consumed spices, Monodora myristica and Myristica fragrans, as adjunct in food formulations. Sci. Res. Essays. 2014;9:607–610. doi: 10.5897/SRE2014.5800. DOI
Sokamte Tegang A., Beumo T.M.N., Dongmo P.M.J., Ngoune L.T. Essential oil of Xylopia aethiopica from Cameroon: Chemical composition, antiradical and in vitro antifungal activity against some mycotoxigenic fungi. J. King Saud. Univ.-Sci. 2018;30:466–471. doi: 10.1016/j.jksus.2017.09.011. DOI
Pavela R., Maggi F., Iannarelli R., Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019;193:236–271. doi: 10.1016/j.actatropica.2019.01.019. PubMed DOI
Pavela R., Sedlák P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2018;113:46–49. doi: 10.1016/j.indcrop.2018.01.021. DOI
Pavela R., Pavoni L., Bonacucina G., Cespi M., Cappellacci L., Petrelli R., Spinozzi E., Aguzzi C., Zeppa L., Ubaldi M., et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021;94:899–915. doi: 10.1007/s10340-020-01327-2. DOI
Suresh U., Murugan K., Panneerselvam C., Aziz A.T., Cianfaglione K., Wang L., Maggi F. Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Ind. Crops Prod. 2020;158:113033. doi: 10.1016/j.indcrop.2020.113033. DOI
Desneux N., Decourtye A., Delpuech J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007;52:81–106. doi: 10.1146/annurev.ento.52.110405.091440. PubMed DOI
Stepanycheva E., Petrova M., Chermenskaya T., Pavela R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019;26:30885–30892. doi: 10.1007/s11356-019-06239-y. PubMed DOI
Pavela R. Sublethal effects of some essential oils on the cotton leafworm Spodoptera littoralis (Boisduval) J. Essent. Oil Bear. Plants. 2012;15:144–156. doi: 10.1080/0972060X.2012.10644030. DOI
Chellappandian M., Thanigaivel A., Vasantha-Srinivasan P., Edwin E.S., Ponsankar A., Selin-Rani S., Kalaivani K., Senthil-Nathan S., Benelli G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ. Sci. Pollut. Res. 2018;25:10294–10306. doi: 10.1007/s11356-017-8952-2. PubMed DOI
Thanigaivel A., Vasantha-Srinivasan P., Edwin E.S., Ponsankar A., Selin-Rani S., Chellappandian M., Kalaivani K., Senthil-Nathan S., Benelli G. Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator. Environ. Sci. Pollut. Res. 2018;25:10340–10352. doi: 10.1007/s11356-017-9102-6. PubMed DOI
Benelli G., Ricciardi R., Romano D., Cosci F., Stefanini C., Lucchi A. Wing-fanning frequency as a releaser boosting male mating success—High-speed video analysis of courtship behavior in Campoplex capitator, a parasitoid of Lobesia botrana. Insect Sci. 2019;27:1298–1310. doi: 10.1111/1744-7917.12740. PubMed DOI
Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from apiaceae and lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI
Pavela R., Žabka M., Vrchotová N., Tříska J. Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.) Ind. Crops Prod. 2018;112:762–765. doi: 10.1016/j.indcrop.2018.01.012. DOI
Benelli G., Pavela R., Iannarelli R., Petrelli R., Cappellacci L., Cianfaglione K., Afshar F.H., Nicoletti M., Canale A., Maggi F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017;96:186–195. doi: 10.1016/j.indcrop.2016.11.059. DOI
Pavela R., Sajfrtová M., Sovová H., Bárnet M. The insecticidal activity of Satureja hortensis L. extracts obtained by supercritical fluid extraction and traditional extraction techniques. Appl. Entomol. Zool. 2008;43:377–382. doi: 10.1303/aez.2008.377. DOI
Benelli G., Pavel R., Zorzetto C., Sanchez-Mateo C.C., Santini G., Canale A., Maggi F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019;39:9–18. doi: 10.1127/entomologia/2019/0662. DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Probit Analysis. Cambridge University Press; Cambridge, UK: 1971.