The chromatin remodeler SMARCA5 binds to d-block metal supports: Characterization of affinities by IMAC chromatography and QM analysis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39374200
PubMed Central
PMC11458017
DOI
10.1371/journal.pone.0309134
PII: PONE-D-23-15801
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové metabolismus chemie MeSH
- kovy chemie metabolismus MeSH
- kvantová teorie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- restrukturace chromatinu MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové MeSH
- kovy MeSH
- ligandy MeSH
- SMARCA5 protein, human MeSH Prohlížeč
The ISWI family protein SMARCA5 contains the ATP-binding pocket that coordinates the catalytic Mg2+ ion and water molecules for ATP hydrolysis. In this study, we demonstrate that SMARCA5 can also possess an alternative metal-binding ability. First, we isolated SMARCA5 on the cobalt column (IMAC) to near homogeneity. Examination of the interactions of SMARCA5 with metal-chelating supports showed that, apart from Co2+, it binds to Cu2+, Zn2+ and Ni2+. The efficiency of the binding to the last-listed metal was influenced by the chelating ligand, resulting in a strong preference for Ni-NTA over the Ni-CM-Asp equivalent. To gain insight in the preferential affinity for the Ni-NTA ligand, QM calculations were performed on model systems and metal-ligand complexes with a limited protein fragment of SMARCA5 containing the double-histidine (dHis) motif. The calculations correlated the observed affinity with the relative stability of the d-block metals to tetradentate ligand coordination over tridentate, as well as their overall octahedral coordination capacity. Likewise, binding free energies derived from model imidazole complexes mirrored the observed Ni-NTA/Ni-CM-Asp preferential affinity. Finally, similar calculations on complexes with a SMARCA5 peptide fragment derived from the AlphaFold structural prediction, captured almost accurately the expected relative stability of the TM complexes, and produced a large energetic separation (~10 kcal∙mol-1) between Ni-NTA and Ni-CM-Asp in favour of the former.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czechia
BIOCEV Institute of Biotechnology of the Czech Academy of Sciences Vestec Czechia
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Tainer J.A., Roberts V.A., and Getzoff E.D., Metal-binding sites in proteins. Curr Opin Biotechnol, 1991. 2(4): p. 582–91. doi: 10.1016/0958-1669(91)90084-i PubMed DOI
Passerini A., et al.., Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins, 2006. 65(2): p. 305–16. doi: 10.1002/prot.21135 PubMed DOI
Cao L., et al.., The Nuclear Matrix Protein SAFA Surveils Viral RNA and Facilitates Immunity by Activating Antiviral Enhancers and Super-enhancers. Cell Host Microbe, 2019. 26(3): p. 369–384 e8. doi: 10.1016/j.chom.2019.08.010 PubMed DOI
Strohner R., et al.., NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J, 2001. 20(17): p. 4892–900. doi: 10.1093/emboj/20.17.4892 PubMed DOI PMC
Narlikar G.J., Sundaramoorthy R., and Owen-Hughes T., Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell, 2013. 154(3): p. 490–503. doi: 10.1016/j.cell.2013.07.011 PubMed DOI PMC
Kornberg R.D., Chromatin structure: a repeating unit of histones and DNA. Science, 1974. 184(4139): p. 868–71. doi: 10.1126/science.184.4139.868 PubMed DOI
Luger K., et al.., Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 1997. 389(6648): p. 251–60. doi: 10.1038/38444 PubMed DOI
Oppikofer M., et al.., Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep, 2017. 18(10): p. 1697–1706. doi: 10.15252/embr.201744011 PubMed DOI PMC
Lu C.H., et al.., The fragment transformation method to detect the protein structural motifs. Proteins, 2006. 63(3): p. 636–43. doi: 10.1002/prot.20904 PubMed DOI
Lin Y.F., et al.., MIB: Metal Ion-Binding Site Prediction and Docking Server. J Chem Inf Model, 2016. 56(12): p. 2287–2291. doi: 10.1021/acs.jcim.6b00407 PubMed DOI
Qiao L. and Xie D., MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information. Anal Biochem, 2019. 566: p. 75–88. doi: 10.1016/j.ab.2018.11.009 PubMed DOI
Yang J., et al.., The I-TASSER Suite: protein structure and function prediction. Nat Methods, 2015. 12(1): p. 7–8. doi: 10.1038/nmeth.3213 PubMed DOI PMC
Sinha K.K., Gross J.D., and Narlikar G.J., Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science, 2017. 355(6322). doi: 10.1126/science.aaa3761 PubMed DOI PMC
Schobert B., The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum. Journal of Biological Chemistry, 1992. 267(15): p. 10252–10257. PubMed
Auld D.S., Zinc coordination sphere in biochemical zinc sites. Biometals, 2001. 14(3–4): p. 271–313. doi: 10.1023/a:1012976615056 PubMed DOI
Ueda E.K., Gout P.W., and Morganti L., Current and prospective applications of metal ion-protein binding. J Chromatogr A, 2003. 988(1): p. 1–23. doi: 10.1016/s0021-9673(02)02057-5 PubMed DOI
Wort J.L., et al.., Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing CuII‐labelling of Double‐Histidine Motifs with Lower Temperature. Angewandte Chemie, 2019. 131(34): p. 11807–11811. doi: 10.1002/anie.201904848 PubMed DOI PMC
Ghosh S., et al.., The Cu(2+)-nitrilotriacetic acid complex improves loading of alpha-helical double histidine site for precise distance measurements by pulsed ESR. J Magn Reson, 2018. 286: p. 163–171. PubMed
Reed G.H. and Poyner R.R., Mn2+ as a probe of divalent metal ion binding and function in enzymes and other proteins. Met Ions Biol Syst, 2000. 37: p. 183–207. PubMed
Binet M.R., et al.., Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem, 2003. 318(1): p. 30–8. doi: 10.1016/s0003-2697(03)00190-8 PubMed DOI
Jensen M.R., et al.., Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Biochemistry, 2005. 44(33): p. 11014–23. doi: 10.1021/bi0508136 PubMed DOI
Herald V.L., et al.., Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Lett, 2003. 537(1–3): p. 96–100. doi: 10.1016/s0014-5793(03)00101-7 PubMed DOI
Porath J., et al.., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598–9. doi: 10.1038/258598a0 PubMed DOI
Vidossich P. and Magistrato A., QM/MM molecular dynamics studies of metal binding proteins. Biomolecules, 2014. 4(3): p. 616–45. doi: 10.3390/biom4030616 PubMed DOI PMC
Warshel A. and Levitt M., Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol, 1976. 103(2): p. 227–49. doi: 10.1016/0022-2836(76)90311-9 PubMed DOI
Field M.J., Bash P.A., and Karplus M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem, 1990. 11(6): p. 700–733.
Senn H.M. and Thiel W., QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl, 2009. 48(7): p. 1198–229. doi: 10.1002/anie.200802019 PubMed DOI
Rokob T.A., et al.., Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem, 2016. 21(5–6): p. 619–44. doi: 10.1007/s00775-016-1357-8 PubMed DOI
Ryde U. and Soderhjelm P., Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev, 2016. 116(9): p. 5520–66. doi: 10.1021/acs.chemrev.5b00630 PubMed DOI
Hohenberg P. and Kohn W., Inhomogeneous electron gas . Phys Rev, 1964. 136: p. B864.
Kohn W. and Sham L.J., Self-consistent equations including exchange and correlation effects. Phys Rev, 1965. 140: p. A1133.
Aalfs J.D., Narlikar G.J., and Kingston R.E., Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J Biol Chem, 2001. 276(36): p. 34270–8. doi: 10.1074/jbc.M104163200 PubMed DOI
Strohner R., et al.., Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin. Mol Cell Biol, 2004. 24(4): p. 1791–8. doi: 10.1128/MCB.24.4.1791-1798.2004 PubMed DOI PMC
Strohner R., NoRC, a novel chromatin remodeling complex involved in ribosomal RNA gene silencing, in Chemistry and Pharmacy. 2004, Ludwig Maximilian University: Munich. p. 142.
Frisch M.J., et al.., Gaussian. 2016, Gaussian, Inc.: Wallingford CT.
Becke A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys, 1988. 38(6): p. 3098–3100. doi: 10.1103/physreva.38.3098 PubMed DOI
Lee C., Yang W., and Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter, 1988. 37(2): p. 785–789. doi: 10.1103/physrevb.37.785 PubMed DOI
Weigend F. and Ahlrichs R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys, 2005. 7(18): p. 3297–305. doi: 10.1039/b508541a PubMed DOI
Weigend F., Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys, 2006. 8(9): p. 1057–65. doi: 10.1039/b515623h PubMed DOI
Grimme S., Ehrlich S., and Goerigk L., Effect of the damping function in dispersion corrected density functional theory. J Comput Chem, 2011. 32(7): p. 1456–65. doi: 10.1002/jcc.21759 PubMed DOI
Tomasi J., Mennucci B., and Cammi R., Quantum mechanical continuum solvation models. Chem Rev, 2005. 105(8): p. 2999–3093. doi: 10.1021/cr9904009 PubMed DOI
Scalmani G. and Frisch M.J., Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys, 2010. 132(11): p. 114110. doi: 10.1063/1.3359469 PubMed DOI
Cossi M., et al.., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett, 1996. 255(4–6): p. 327–335.
Connolly M.L., Solvent-accessible surfaces of proteins and nucleic acids. Science, 1983. 221(4612): p. 709–13. doi: 10.1126/science.6879170 PubMed DOI
Simon S., Duran M., and Dannenberg J.J., How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? The Journal of Chemical Physics, 1996. 105(24): p. 11024–11031.
Boys S.F. and Bernardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 2006. 19(4): p. 553–566.
Risthaus T. and Grimme S., Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J Chem Theory Comput, 2013. 9(3): p. 1580–91. doi: 10.1021/ct301081n PubMed DOI
Tao J., et al.., Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett, 2003. 91(14): p. 146401. doi: 10.1103/PhysRevLett.91.146401 PubMed DOI
Zhao Y. and Truhlar D.G., Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. The Journal of Physical Chemistry A, 2004. 108(33): p. 6908–6918.
Shiekh B.A., Hierarchy of Commonly Used DFT Methods for Predicting the Thermochemistry of Rh-Mediated Chemical Transformations. ACS Omega, 2019. 4(13): p. 15435–15443. doi: 10.1021/acsomega.9b01563 PubMed DOI PMC
Kelley L.A., et al.., The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc, 2015. 10(6): p. 845–58. doi: 10.1038/nprot.2015.053 PubMed DOI PMC
Arnold F.H. and Haymore B.L., Engineered metal-binding proteins: purification to protein folding. Science, 1991. 252(5014): p. 1796–7. doi: 10.1126/science.1648261 PubMed DOI
Cunningham T.F., et al.., The double-histidine Cu(2)(+)-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements. Angew Chem Int Ed Engl, 2015. 54(21): p. 6330–4. PubMed PMC
Bahramzadeh A., et al.., Two Histidines in an alpha-Helix: A Rigid Co(2+) -Binding Motif for PCS Measurements by NMR Spectroscopy. Angew Chem Int Ed Engl, 2018. 57(21): p. 6226–6229. PubMed
Hekkelman M.L., et al.., AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods, 2023. 20(2): p. 205–213. doi: 10.1038/s41592-022-01685-y PubMed DOI PMC
Ghosh S., Saxena S., and Jeschke G., Rotamer Modelling of Cu(II) Spin Labels Based on the Double-Histidine Motif. Applied Magnetic Resonance, 2018. 49(11): p. 1281–1298.
Bogetti X., et al.., Molecular Dynamics Simulations Based on Newly Developed Force Field Parameters for Cu(2+) Spin Labels Provide Insights into Double-Histidine-Based Double Electron-Electron Resonance. J Phys Chem B, 2020. 124(14): p. 2788–2797. doi: 10.1021/acs.jpcb.0c00739 PubMed DOI
Sameach H., et al.., EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR. Angew Chem Int Ed Engl, 2019. 58(10): p. 3053–3056. doi: 10.1002/anie.201810656 PubMed DOI
Singewald K., et al.., Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci, 2022. 31(7): p. e4359. doi: 10.1002/pro.4359 PubMed DOI PMC
Bresolin I.T.L., et al.., Evaluation of Immobilized Metal-Ion Affinity Chromatography (IMAC) as a Technique for IgG1 Monoclonal Antibodies Purification: The Effect of Chelating Ligand and Support. Applied Biochemistry and Biotechnology, 2010. 160(7): p. 2148–2165. doi: 10.1007/s12010-009-8734-5 PubMed DOI
Irving H. and Williams R.J.P., 637. The stability of transition-metal complexes. Journal of the Chemical Society (Resumed), 1953.
Choi T.S. and Tezcan F.A., Overcoming universal restrictions on metal selectivity by protein design. Nature, 2022. 603(7901): p. 522–527. doi: 10.1038/s41586-022-04469-8 PubMed DOI PMC
Kisgeropoulos E.C., et al.., Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. J Am Chem Soc, 2020. 142(11): p. 5338–5354. doi: 10.1021/jacs.0c00333 PubMed DOI PMC
Grave K., et al.., The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J Biol Inorg Chem, 2020. 25(4): p. 571–582. doi: 10.1007/s00775-020-01782-3 PubMed DOI PMC
Fairman-Williams M.E., Guenther U.P., and Jankowsky E., SF1 and SF2 helicases: family matters. Curr Opin Struct Biol, 2010. 20(3): p. 313–24. doi: 10.1016/j.sbi.2010.03.011 PubMed DOI PMC
Walker J.E., et al.., Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J, 1982. 1(8): p. 945–51. doi: 10.1002/j.1460-2075.1982.tb01276.x PubMed DOI PMC
Singleton M.R., Dillingham M.S., and Wigley D.B., Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 2007. 76: p. 23–50. doi: 10.1146/annurev.biochem.76.052305.115300 PubMed DOI
Racki L.R., et al.., The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme. J Mol Biol, 2014. 426(10): p. 2034–44. doi: 10.1016/j.jmb.2014.02.021 PubMed DOI PMC
Cairns B.R., Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol, 2007. 14(11): p. 989–96. doi: 10.1038/nsmb1333 PubMed DOI PMC
Gottesfeld J.M. and Luger K., Energetics and affinity of the histone octamer for defined DNA sequences. Biochemistry, 2001. 40(37): p. 10927–33. doi: 10.1021/bi0109966 PubMed DOI