Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32961890
PubMed Central
PMC7559805
DOI
10.3390/nano10091867
PII: nano10091867
Knihovny.cz E-zdroje
- Klíčová slova
- European grapevine moth, Integrated Pest Management, Larvicide, Tortricidae, green pesticide, insect pest, nano-insecticide,
- Publikační typ
- časopisecké články MeSH
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.
Crop Research Institute Drnovska 507 161 06 Prague Czech Republic
School of Pharmacy University of Camerino 62032 Camerino Italy
Zobrazit více v PubMed
Ioriatti C., Anfora G., Tasin M., De Cristofaro A., Witzgall P., Lucchi A. Chemical Ecology and Management of Lobesia botrana (Lepidoptera: Tortricidae) J. Econ. Entomol. 2011;104:1125–1137. doi: 10.1603/EC10443. PubMed DOI
Lucchi A., Benelli G. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environ. Sci. Pollut. Res. 2018;25:13439–13445. doi: 10.1007/s11356-018-1919-0. PubMed DOI
Benelli G., Lucchi A., Thomson D., Ioriatti C. Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects. 2019;10:308. doi: 10.3390/insects10100308. PubMed DOI PMC
Lucchi A., Sambado P., Juan Royo A.B., Bagnoli B., Conte G., Benelli G. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environ. Sci. Pollut. Res. 2018;25:22196–22204. doi: 10.1007/s11356-018-2341-3. PubMed DOI
Ifoulis A.A., Savopoulou-Soultani M. Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae by using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. J. Econ. Entomol. 2004;97:340–343. doi: 10.1603/0022-0493-97.2.340. PubMed DOI
Civolani S., Boselli M., Butturini A., Chicca M., Fano E.A., Cassanelli S. Assessment of insecticide resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia-Romagna region. J. Econ. Entomol. 2014;107:1245–1249. doi: 10.1603/EC13537. PubMed DOI
Vassiliou V.A. Effectiveness of insecticides in controlling the first and second generations of the Lobesia botrana (Lepidoptera: Tortricidae) in table grapes. J. Econ. Entomol. 2011;104:580–585. doi: 10.1603/EC10343. PubMed DOI
Pavan F., Cargnus E., Bigot G., Zandigiacomo P. Residual activity of insecticides applied against Lobesia botrana and its influence on resistance management strategies. Bull. Insectol. 2014;67:273–280.
Thiéry D., Louâpre P., Muneret L., Rusch A., Sentenac G., Vogelweith F., Iltis C., Moreau J. Biological protection against grape berry moths. A review. Agron. Sustain. Dev. 2018;38:15. doi: 10.1007/s13593-018-0493-7. DOI
Desneux N., Decourtye A., Delpuech J.-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 2006;52:81–106. doi: 10.1146/annurev.ento.52.110405.091440. PubMed DOI
Guedes R.N.C. Insecticide resistance, control failure likelihood and the First Law of Geography. Pest Manag. Sci. 2017;73:479–484. doi: 10.1002/ps.4452. PubMed DOI
Navarro Roldán M., Gemeno C. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths. J. Chem. Ecol. 2017;43:881–890. doi: 10.1007/s10886-017-0883-3. PubMed DOI
Benelli G. Plant-borne compounds and nanoparticles: Challenges for medicine, parasitology and entomology. Environ. Sci. Pollut. Res. 2018;25:10149–10150. doi: 10.1007/s11356-017-9960-y. PubMed DOI
Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant. Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Li Y., Fabiano-Tixier A.-S., Chemat F. Essential Oils: From Conventional to Green Extraction. In: Li Y., Fabiano-Tixier A.-S., Chemat F., editors. Essential Oils as Reagents in Green Chemistry. SpringerBriefs in Molecular Science; Springer International Publishing; Cham, Switzerland: 2014. pp. 9–20.
Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI
de Souza M.A., da Silva L., Macêdo M.J.F., Lacerda-Neto L.J., dos Santos M.A.C., Coutinho H.D.M., Cunha F.A.B. Adulticide and repellent activity of essential oils against Aedes aegypti (Diptera: Culicidae)—A review. S. Afr. J. Bot. 2019;124:160–165. doi: 10.1016/j.sajb.2019.05.007. DOI
Kanat M., Alma M.H. Insecticidal effects of essential oils from various plants against larvae of pine processionary moth (Thaumetopoea pityocampa Schiff) (Lepidoptera: Thaumetopoeidae) Pest Manag. Sci. 2004;60:173–177. doi: 10.1002/ps.802. PubMed DOI
Pavela R., Maggi F., Cianfaglione K., Bruno M., Benelli G. Larvicidal Activity of Essential Oils of Five Apiaceae Taxa and Some of Their Main Constituents Against Culex quinquefasciatus. Chem. Biodivers. 2018;15:e1700382. doi: 10.1002/cbdv.201700382. PubMed DOI
Chandrasekaran T., Thyagarajan A., Santhakumari P.G., Pillai A.K.B., Krishnan U.M. Larvicidal activity of essential oil from Vitex negundo and Vitex trifolia on dengue vector mosquito Aedes aegypti. Rev. Soc. Bras. Med. Trop. 2019;52 doi: 10.1590/0037-8682-0459-2018. PubMed DOI
Ríos N., Stashenko E.E., Duque J.E., Ríos N., Stashenko E.E., Duque J.E. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae) Rev. Bras. Entomol. 2017;61:307–311. doi: 10.1016/j.rbe.2017.08.005. DOI
Pavela R., Žabka M., Bednář J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crops Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Filomeno C.A., Barbosa L.C.A., Teixeira R.R., Pinheiro A.L., de Sá Farias E., de Paula Silva E.M., Picanço M.C. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crops Prod. 2017;109:374–383. doi: 10.1016/j.indcrop.2017.08.033. DOI
Benelli G., Pavela R., Rakotosaona R., Nzekoue F.K., Canale A., Nicoletti M., Maggi F. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J. Ethnopharmacol. 2020;248:112333. doi: 10.1016/j.jep.2019.112333. PubMed DOI
Landolt P.J., Hofstetter R.W., Biddick L.L. Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae) Environ. Entomol. 1999;28:954–960. doi: 10.1093/ee/28.6.954. DOI
Yigit Ş., Saruhan İ., Akça İ. The effect of some commercial plant oils on the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) J. For. Sci. 2019;65:309–312. doi: 10.17221/63/2019-JFS. DOI
Gotyal B.S., Srivastava C., Walia S. Fumigant Toxicity of Essential Oil from Lantana camara Against Almond Moth, Cadra cautella (Walker) J. Essent. Oil Bear. Plants. 2016;19:1521–1526. doi: 10.1080/0972060X.2016.1253507. DOI
Pavela R., Maggi F., Lupidi G., Cianfaglione K., Dauvergne X., Bruno M., Benelli G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.) Ind. Crops Prod. 2017;109:603–610. doi: 10.1016/j.indcrop.2017.09.013. DOI
Benelli G., Pavela R., Petrelli R., Cappellacci L., Santini G., Fiorini D., Sut S., Dall’Acqua S., Canale A., Maggi F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crops Prod. 2018;122:308–315. doi: 10.1016/j.indcrop.2018.05.032. DOI
Benelli G., Pavela R., Zorzetto C., Sánchez-Mateo C.C., Santini G., Canale A., Maggi F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019:9–18. doi: 10.1127/entomologia/2019/0662. DOI
Vasantha-Srinivasan P., Senthil-Nathan S., Thanigaivel A., Edwin E.-S., Ponsankar A., Selin-Rani S., Pradeepa V., Sakthi-Bhagavathy M., Kalaivani K., Hunter W.B., et al. Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Chemosphere. 2016;155:336–347. doi: 10.1016/j.chemosphere.2016.03.139. PubMed DOI
Selin-Rani S., Senthil-Nathan S., Thanigaivel A., Vasantha-Srinivasan P., Edwin E.-S., Ponsankar A., Lija-Escaline J., Kalaivani K., Abdel-Megeed A., Hunter W.B., et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere. 2016;165:257–267. doi: 10.1016/j.chemosphere.2016.08.136. PubMed DOI
Ponsankar A., Vasantha-Srinivasan P., Senthil-Nathan S., Thanigaivel A., Edwin E.-S., Selin-Rani S., Kalaivani K., Hunter W.B., Alessandro R.T., Abdel-Megeed A., et al. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol. Environ. Saf. 2016;133:260–270. doi: 10.1016/j.ecoenv.2016.06.043. PubMed DOI
Avgın S.S., Karaman Ş., Bahadıroğlu C. Laboratory Assays of Plant Extracts Against Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) Larvae. J. Entomol. Sci. 2008;43:423–425. doi: 10.18474/0749-8004-43.4.423. DOI
Perlatti B., de Souza Bergo P.L., das Gracas Fernandes da Silva M.F., Batista Fernandes J., Rossi Forim M. Polymeric Nanoparticle-Based Insecticides: A Controlled Release Purpose for Agrochemicals. In: Trdan S., editor. Insecticides—Development of Safer and More Effective Technologies. InTech; Rijeka, Croatia: 2013. pp. 521–548. DOI
Song S., Liu X., Jiang J., Qian Y., Zhang N., Wu Q. Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf. Physicochem. Eng. Asp. 2009;350:57–62. doi: 10.1016/j.colsurfa.2009.08.034. DOI
Pavoni L., Pavela R., Cespi M., Bonacucina G., Maggi F., Zeni V., Canale A., Lucchi A., Bruschi F., Benelli G. Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials. 2019;9:1285. doi: 10.3390/nano9091285. PubMed DOI PMC
Nikam T., Patil M., Patil S., Vadnere G., Lodhi S. Nanoemulsion: A brief review on development and application in Parenteral Drug Delivery. Adv. Pharm. J. 2018;3:43–54. doi: 10.31024/apj.2018.3.2.2. DOI
Turek C., Stintzing F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI
Heydari M., Amirjani A., Bagheri M., Sharifian I., Sabahi Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. 2020;27:6667–6679. doi: 10.1007/s11356-019-07332-y. PubMed DOI
Pascual-Villalobos M.J., Cantó-Tejero M., Vallejo R., Guirao P., Rodríguez-Rojo S., Cocero M.J. Use of nanoemulsions of plant essential oils as aphid repellents. Ind. Crops Prod. 2017;110:45–57. doi: 10.1016/j.indcrop.2017.05.019. DOI
Pascual-Villalobos M.J., Guirao P., Díaz-Baños F.G., Cantó-Tejero M., Villora G. Oil in water nanoemulsion formulations of botanical active substances. In: Koul O., editor. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. pp. 223–247. Chapter 9. DOI
Oliveira A.E.M.F.M., Duarte J.L., Cruz R.A.S., Souto R.N.P., Ferreira R.M.A., Peniche T., da Conceição E.C., de Oliveira L.A.R., Faustino S.M.M., Florentino A.C., et al. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnol. 2017;15:2. doi: 10.1186/s12951-016-0234-5. PubMed DOI PMC
Duarte J.L., Amado J.R.R., Oliveira A.E.M.F.M., Cruz R.A.S., Ferreira A.M., Souto R.N.P., Falcão D.Q., Carvalho J.C.T., Fernandes C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn. 2015;25:189–192. doi: 10.1016/j.bjp.2015.02.010. DOI
Sugumar S., Clarke S.K., Nirmala M.J., Tyagi B.K., Mukherjee A., Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014;104:393–402. doi: 10.1017/S0007485313000710. PubMed DOI
Pant M., Dubey S., Patanjali P.K., Naik S.N., Sharma S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegrad. 2014;91:119–127. doi: 10.1016/j.ibiod.2013.11.019. DOI
Choupanian M., Omar D., Basri M., Asib N. Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. J. Pestic. Sci. 2017;42:158–165. doi: 10.1584/jpestics.D17-032. PubMed DOI PMC
Jesser E., Lorenzetti A.S., Yeguerman C., Murray A.P., Domini C., Werdin-González J.O. Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management. Ultrason. Sonochem. 2020;61:104832. doi: 10.1016/j.ultsonch.2019.104832. PubMed DOI
Louni M., Shakarami J., Negahban M. Insecticidal efficacy of nanoemulsion containing Mentha longifolia essential oil against Ephestia kuehniella (Lepidoptera: Pyralidae) J. Crop. Prot. 2018;7:171–182.
Elbadawy M.A.E., Azab M.M., Shams El Din A.M., Radwan E.M.M. Toxicity of Some Plant Oil Nanoemulsions to Black Cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae) Nanotechnol. Agric. Food Environ. 2019;1:1. doi: 10.34195/nafe.2019.09.001. DOI
Mossa A.-T.H., Abdelfatta N.A.H., Mohafrash S.M.M. Nanoemulsion of Camphor (Eucalyptus globulus) Essential Oil, Formulation, Characterization and Insecticidal Activity against Wheat Weevil, Sitophilus granarius. Asian J. Crop. Sci. 2017;9:50–62. doi: 10.3923/ajcs.2017.50.62. DOI
Balasubramani S., Rajendhiran T., Moola A.K., Diana R.K.B. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.) Environ. Sci. Pollut. Res. 2017;24:15125–15133. doi: 10.1007/s11356-017-9118-y. PubMed DOI
Kalaitzaki A., Papanikolaou N.E., Karamaouna F., Dourtoglou V., Xenakis A., Papadimitriou V. Biocompatible Colloidal Dispersions as Potential Formulations of Natural Pyrethrins: A Structural and Efficacy Study. Langmuir. 2015;31:5722–5730. doi: 10.1021/acs.langmuir.5b00246. PubMed DOI
Kavallieratos N.G., Boukouvala M.C., Ntalli N., Skourti A., Karagianni E.S., Nika E.P., Kontodimas D.C., Cappellacci L., Petrelli R., Cianfaglione K., et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020;139:111255. doi: 10.1016/j.fct.2020.111255. PubMed DOI
Benelli G., Pavela R., Petrelli R., Nzekoue F.K., Cappellacci L., Lupidi G., Quassinti L., Bramucci M., Sut S., Dall’Acqua S., et al. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019;137:356–366. doi: 10.1016/j.indcrop.2019.05.037. DOI
Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. Flora Europaea. Volume 4. Plantaginaceae to Compositae (and Rubiaceae) Cambridge University Press; Cambridge, UK: 1976. DOI
Pharmacopoeia Bavarica, Monachii. [(accessed on 21 May 2020)];1822 Available online: https://archive.org/details/pharmacopoeabava00mona/page/n3/mode/2up.
Bukowiecki H., Furmanó M., Sujka J. Pharmacopoeia Regni Poloniae. Volume 16. Typographia juxta Novolipium Nro 646; Warsaw, Poland: 1817. Medical herbs; pp. 15–53.
Pharmacopoeia Universalis, Weimar. [(accessed on 21 May 2020)];1832 Available online: https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb1028803000009.html.
Pharmacopoeia Universalis, Weimar. [(accessed on 22 May 2020)];1838 Available online: https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb1028803000009.html.
Hort A.S. Theophrastus: Enquiry into Plants, and Minor Works on Odours and Weather Signs. Volume 2 Harvard University Press; Cambridge, MA, USA: William Heinemann; London, UK: 1949. Loeb Classical Library 79.
Ruellio I. Pedanii Dioscoridis Anazarbei, De Medicinali Materia Libri Sex. Apud Balthazarem Arnolletum; Lugduni, Rome: 1552. pp. 1–828. DOI
Kluk J.K. Dykcjonarz Roślinny. Drukarnia Xięży Pijarów; Warsaw, Poland: 1805.
Guarrera P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium) Fitoterapia. 2003;74:515–544. doi: 10.1016/S0367-326X(03)00122-9. PubMed DOI
Menale B., Amato G., Prisco C.D., Muoio R. Traditional uses of plants in North-Western Molise (Central Italy) Delpinoa. 2006;48:29–36. doi: 10.1186/1746-4269-8-21. DOI
Redzić S.S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll. Antropol. 2007;31:869–890. PubMed
Strzemski M., Wojnicki K., Sowa I., Wojas-Krawczyk K., Krawczyk P., Kocjan R., Such J., Latalski M., Wnorowski A., Wójciak-Kosior M. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka. Front. Pharmacol. 2017;8:371. doi: 10.3389/fphar.2017.00371. PubMed DOI PMC
Gazzetta Ufficiale. [(accessed on 27 May 2020)]; Available online: https://www.gazzettaufficiale.it/eli/gu/2018/09/26/224/sg/pdf.
Cousyn G., Dalfrà S., Scarpa B., Geelen J., Anton R., Serafini M., Delmulle L. Project belfrit: Harmonizing the use of plants in food supplements in the european union: Belgium, France and Italy—A first step. Eur. Food Feed Law Rev. 2013;8:187–196.
Pavela R., Maggi F., Petrelli R., Cappellacci L., Buccioni M., Palmieri A., Canale A., Benelli G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020;136:111037. doi: 10.1016/j.fct.2019.111037. PubMed DOI
Vanden Dool H., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Rosi Cappellani M., Perinelli D.R., Pescosolido L., Schoubben A., Cespi M., Cossi R., Blasi P. Injectable nanoemulsions prepared by high pressure homogenization: Processing, sterilization, and size evolution. Appl. Nanosci. Switz. 2018;8:1483–1491. doi: 10.1007/s13204-018-0829-2. DOI
Alkilani A.Z., Hamed R., Al-Marabeh S., Kamal A., Abu-Huwaij R., Hamad I. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. J. Drug Deliv. Sci. Technol. 2018;46:122–128. doi: 10.1016/j.jddst.2018.05.015. DOI
Gabel B. Über eine neue semisynthetische Nahrung für die Raupen des Bekreuzten Traubenwicklers, Lobesia botrana Den. et Schiff. (Lepid., Tortricidae) Anz. Für Schädlingskunde Pflanzenschutz Umweltschutz. 1980;53:72–74. doi: 10.1007/BF01965894. DOI
Bosch D., Rodríguez M., Avilla J. A new bioassay to test insecticide resistance of Cydia pomonella (L.) first instar larvae: Results from some field populations of Lleida (Spain) Pome Fruit Arthropods IOBC/wprs Bulletin. 2007;30:195–199.
Abbott W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Statistical Method in Biological Assay. 3rd ed. Hodder Arnold; London, UK: 1978.
Pavoni L., Perinelli D.R., Bonacucina G., Cespi M., Palmieri G.F. An Overview of Micro-and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials. 2020;10:135. doi: 10.3390/nano10010135. PubMed DOI PMC
Pavela R., Pavoni L., Bonacucina G., Cespi M., Kavallieratos N.G., Cappellacci L., Petrelli R., Maggi F., Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019;92:909–921. doi: 10.1007/s10340-018-01076-3. DOI
Pavela R., Benelli G., Pavoni L., Bonacucina G., Cespi M., Cianfaglione K., Bajalan I., Morshedloo M.R., Lupidi G., Romano D., et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019;129:631–640. doi: 10.1016/j.indcrop.2018.11.073. DOI
Rao J., McClements D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011;59:5026–5035. doi: 10.1021/jf200094m. PubMed DOI
Yuan Y., Gao Y., Zhao J., Mao L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 2008;41:61–68. doi: 10.1016/j.foodres.2007.09.006. DOI
Gupta A., Eral H.B., Hatton T.A., Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter. 2016;12:2826–2841. doi: 10.1039/C5SM02958A. PubMed DOI
Sadeghi R., Etemad S.G., Keshavarzi E., Haghshenasfard M. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluidics. 2015;18:1023–1030. doi: 10.1007/s10404-014-1491-y. DOI
Ammar H.O., Salama H.A., Ghorab M., Mahmoud A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10:808. doi: 10.1208/s12249-009-9268-4. PubMed DOI PMC
Huang Q., Yu H., Ru Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 2010;75:R50–R57. doi: 10.1111/j.1750-3841.2009.01457.x. PubMed DOI
Cattaneo A.M., Bengtsson J.M., Borgonovo G., Bassoli A., Anfora G. Response of the European grapevine moth Lobesia botrana to somatosensory-active volatiles emitted by the non-host plant Perilla frutescens. Physiol. Entomol. 2014;39:229–236. doi: 10.1111/phen.12067. DOI
Katerinopoulos H.E., Pagona G., Afratis A., Stratigakis N., Roditakis N. Composition and insect attracting activity of the Essential oil of Rosmarinus officinalis. J. Chem. Ecol. 2005;31:111–122. doi: 10.1007/s10886-005-0978-0. PubMed DOI
Konovalov D.A. Polyacetylene Compounds of Plants of the Asteraceae Family (Review) Pharm. Chem. J. 2014;48:613–631. doi: 10.1007/s11094-014-1159-7. DOI
Czyzewska M.M., Chrobok L., Kania A., Jatczak M., Pollastro F., Appendino G., Mozrzymas J.W. Dietary Acetylenic Oxylipin Falcarinol Differentially Modulates GABAA Receptors. J. Nat. Prod. 2014;77:2671–2677. doi: 10.1021/np500615j. PubMed DOI
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015;76:174–187. doi: 10.1016/j.indcrop.2015.06.050. DOI
Pavela R., Maggi F., Iannarelli R., Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019;193:236–271. doi: 10.1016/j.actatropica.2019.01.019. PubMed DOI
Isman M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2019;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI
Rizzo R., Lo Verde G., Sinacori M., Maggi F., Cappellacci L., Petrelli R., Vittori S., Morshedloo M.R., Fofie N.G.B.Y., Benelli G. Developing green insecticides to manage olive fruit flies? Ingestion toxicity of four essential oils in protein baits on Bactrocera oleae. Ind. Crops Prod. 2020;143:111884. doi: 10.1016/j.indcrop.2019.111884. DOI
Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity