Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity

. 2023 May 26 ; 86 (5) : 1307-1316. [epub] 20230512

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37172063

Compounds isolated from botanical sources represent innovative and promising alternatives to conventional insecticides. Carlina oxide is a compound isolated from Carlina acaulis L. (Asteraceae) essential oil (EO) with great potential as bioinsecticide, being effective on various arthropod vectors and agricultural pests, with moderate toxicity on non-target species. Since the production from the wild source is limited, there is the need of exploring new synthetic routes for obtaining this compound and analogues with improved bioactivity and lower toxicity. Herein, the chemical synthesis of carlina oxide analogues was developed. Their insecticidal activity was assessed on the vectors Musca domestica L. and Culex quinquefasciatus Say, and their cytotoxicity was evaluated on a human keratinocyte cell line (HaCaT). The compounds' activity was compared with that of the natural counterparts EO and carlina oxide. In housefly tests, the analogues were comparably effective to purified carlina oxide. In Cx. quinquefasciatus assays, the meta-chloro analogue provided a significantly higher efficacy (LC50 of 0.71 μg mL-1) than the EO and carlina oxide (LC50 1.21 and 1.31 μg mL-1, respectively) and a better safety profile than carlina oxide on keratinocytes. Overall, this study can open the way to an agrochemical production of carlina oxide analogues employable as nature-inspired insecticides.

Zobrazit více v PubMed

Benelli G.; Beier J. C. Acta Trop. 2017, 174, 91–96. 10.1016/j.actatropica.2017.06.028. PubMed DOI

Blindauer K. M.; Jackson R. J.; McGeehin M.; Pertowski C.; Rubin C. J. Environ. Health 1999, 61 (10), 9.

Desneux N.; Decourtye A.; Delpuech J. M. Annu. Rev. Entomol. 2007, 52, 81–106. 10.1146/annurev.ento.52.110405.091440. PubMed DOI

Guedes R. N. C.; Benelli G.; Agathokleous E. Curr. Opin. Environ. Sci. Health 2022, 28, 100371.10.1016/j.coesh.2022.100371. DOI

Mossa A. T. H.; Mohafrash S. M.; Chandrasekaran N. Biomed. Res. Int. 2018, 2018, 1–17. 10.1155/2018/4308054. PubMed DOI PMC

Souto A. L.; Sylvestre M.; Tölke E. D.; Tavares J. F.; Barbosa-Filho J. M.; Cebrián-Torrejón G. Molecules 2021, 26 (16), 4835.10.3390/molecules26164835. PubMed DOI PMC

Giunti G.; Benelli G.; Palmeri V.; Laudani F.; Ricupero M.; Ricciardi R.; et al. Biol. Control 2022, 176, 105071.10.1016/j.biocontrol.2022.105071. DOI

Isman M. B. Annu. Rev. Entomol. 2020, 65, 233–249. 10.1146/annurev-ento-011019-025010. PubMed DOI

Pavela R.; Benelli G. Trends Plant Sci. 2016, 21 (12), 1000–1007. 10.1016/j.tplants.2016.10.005. PubMed DOI

Tutin F. G.; Heywood V. H.; Burges N. A.; Moore D. M.; Valentine D. H.; Walters S. M.; Webb D. A. In Flora Europea, Vol. 4; Plantaginaceae to Compositae (and Rubiaceae); Tutin F. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A, Eds.; Cambridge University Press: Cambridge, 1976; p 210.

Belabbes R.; Mami I. R.; Dib M. E.; Mejdoub K.; Tabti B.; Costa J.; Muselli A. Curr. Nutr. Food Sci. 2020, 16 (4), 563–570. 10.2174/1573401315666190206142929. DOI

Herrmann F.; Hamoud R.; Sporer F.; Tahrani A.; Wink M. Planta Med. 2011, 77 (17), 1905–1911. 10.1055/s-0031-1279984. PubMed DOI

Stojanović-Radić Z.; Čomić L.; Radulović N.; Blagojević P.; Mihajilov-Krstev T.; Rajković J. Pharm. Biol. 2012, 50 (8), 933–940. 10.3109/13880209.2011.649214. PubMed DOI

Strzemski M.; Wójciak-Kosior M.; Sowa I.; Załuski D.; Verpoorte R. J. Ethnopharmacol. 2019, 239, 111842.10.1016/j.jep.2019.111842. PubMed DOI

Rosato A.; Barbarossa A.; Mustafa A. M.; Bonacucina G.; Perinelli D. R.; Petrelli R.; et al. Antibiotics 2021, 10 (12), 1451.10.3390/antibiotics10121451. PubMed DOI PMC

Grisebach H.; Ebel J. Angew. Chem., Int. Ed. Engl. 1978, 17 (9), 635–647. 10.1002/anie.197806351. DOI

Kavallieratos N. G.; Nika E. P.; Skourti A.; Spinozzi E.; Ferrati M.; Petrelli R.; et al. Ind. Crops Prod. 2022, 188, 115572.10.1016/j.indcrop.2022.115572. DOI

Pavela R.; Maggi F.; Petrelli R.; Cappellacci L.; Buccioni M.; Palmieri A.; et al. Food Chem. Toxicol. 2020, 136, 111037.10.1016/j.fct.2019.111037. PubMed DOI

Rizzo R.; Pistillo M.; Germinara G. S.; Lo Verde G.; Sinacori M.; Maggi F.; et al. Insects 2021, 12 (10), 880.10.3390/insects12100880. PubMed DOI PMC

Spinozzi E.; Ferrati M.; Cappellacci L.; Caselli A.; Perinelli D. R.; Bonacucina G.; et al. Ind. Crops Prod. 2023, 192, 116076.10.1016/j.indcrop.2022.116076. DOI

Benelli G.; Ceccarelli C.; Zeni V.; Rizzo R.; Verde G. L.; Sinacori M.; et al. Chemosphere 2022, 287, 132089.10.1016/j.chemosphere.2021.132089. PubMed DOI

Pavela R.; Pavoni L.; Bonacucina G.; Cespi M.; Cappellacci L.; Petrelli R.; et al. J. Pest Sci. 2021, 94 (3), 899–915. 10.1007/s10340-020-01327-2. DOI

Hinkle N. C.; Hogsette J. A. Insects 2021, 12 (11), 1042.10.3390/insects12111042. PubMed DOI PMC

Samy A. M.; Elaagip A. H.; Kenawy M. A.; Ayres C. F.; Peterson A. T.; Soliman D. E. PloS One 2016, 11, e0163863.10.1371/journal.pone.0163863. PubMed DOI PMC

Wilke A. B.; Beier J. C.; Benelli G. Entomol. Gen. 2020, 40, 15–24. 10.1127/entomologia/2019/0776. DOI

Hameury T.; Guillemont J.; Van Hijfte L.; Bellosta V.; Cossy J. Org. Lett. 2009, 11 (11), 2397–2400. 10.1021/ol900494g. PubMed DOI

Konno H.; Sato T.; Saito Y.; Sakamoto I.; Akaji K. Bioorg. Med. Chem. Lett. 2015, 25 (22), 5127–5132. 10.1016/j.bmcl.2015.10.007. PubMed DOI

Louvel J.; Carvalho J. F. S.; Yu Z.; Soethoudt M.; Lenselink E. B.; Klaasse E.; Brussee J.; IJzerman A. P. J. Med. Chem. 2013, 56 (23), 9427–9440. 10.1021/jm4010434. PubMed DOI

Tomas-Mendivil E.; Starck J.; Ortuno J. C.; Michelet V. Org. lett. 2015, 17 (24), 6126–6129. 10.1021/acs.orglett.5b03146. PubMed DOI

Mami I. R.; Amina T. Z.; Pérard J.; Arrar Z.; Dib M. E. Comb. Chem. High Throughput Screen. 2021, 24 (9), 1503–1513. 10.2174/1386207323999201103214141. PubMed DOI

Benelli G.; Pavela R.; Petrelli R.; Nzekoue F. K.; Cappellacci L.; Lupidi G.; et al. Ind. Crops Prod. 2019, 137, 356–366. 10.1016/j.indcrop.2019.05.037. DOI

Birkenmeyer R. D.; Kagan F. J. Med. Chem. 1970, 13 (4), 616–619. 10.1021/jm00298a007. PubMed DOI

Harris C. M.; Kannan R.; Kopecka H.; Harris T. M. J. Am. Chem. Soc. 1985, 107 (23), 6652–6658. 10.1021/ja00309a038. DOI

Golakoti T.; Ogino J.; Heltzel C. E.; Le Husebo T.; Jensen C. M.; Larsen L. K.; et al. J. Am. Chem. Soc. 1995, 117 (49), 12030–12049. 10.1021/ja00154a002. DOI

Nagaoka H.; Miyakoshi T.; Kasuga J. I.; Yamada Y. Tetrahedron Lett. 1985, 26 (41), 5053–5056. 10.1016/S0040-4039(01)80851-0. DOI

Naumann K. Pest Manag. Sci. 2000, 56 (1), 3–21. 10.1002/(SICI)1526-4998(200001)56:1<3::AID-PS107>3.0.CO;2-P. DOI

Pavić K.; Perković I.; Cindrić M.; Pranjić M.; Martin-Kleiner I.; Kralj M.; et al. Eur. J. Med. Chem. 2014, 86, 502–514. 10.1016/j.ejmech.2014.09.013. PubMed DOI

Caldas E. D.. In Sustainable Agrochemistry: A Compendium of Technologies; Toxicological Aspects of Pesticides; Vaz S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp 275–305.

ISO 10993-5. In Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity; International Organization for Standardization, 2009.

Larsen C. H.; Anderson K. W.; Tundel R. E.; Buchwald S. L. Synlett. 2006, 2006 (18), 2941–2946. 10.1055/s-2006-949625. DOI

Gilman H.; Wright G. F. J. Am. Chem. Soc. 1933, 55 (8), 3302–3314. 10.1021/ja01335a043. DOI

Yang X.; Ge S. Organometallics 2022, 41 (14), 1823–1828. 10.1021/acs.organomet.2c00053. DOI

Kinena L.; Leitis G.; Kanepe-Lapsa I.; Bobrovs R.; Jaudzems K.; Ozola V.; Suna E.; Jirgensons A. Arch. Pharm. 2018, 351 (9), 1800151.10.1002/ardp.201800151. PubMed DOI

Henrion G.; Chavas T. E.; Le Goff X.; Gagosz F. Angew. Chem. 2013, 125 (24), 6397–6402. 10.1002/ange.201301015. PubMed DOI

Benelli G.; Pavoni L.; Zeni V.; Ricciardi R.; Cosci F.; Cacopardo G.; Gendusa S.; Spinozzi E.; Petrelli R.; Cappellacci L.; Maggi F.; Pavela R.; Bonacucina G.; Lucchi A. Nanomaterials 2020, 10, 1867.10.3390/nano10091867. PubMed DOI PMC

Pavela R. Ind. Crops Prod. 2013, 43, 745–750. 10.1016/j.indcrop.2012.08.025. DOI

World Health Organization. Report of the WHO Informal Consultation on the “Evaluation and Testing of Insecticides”, WHO/HQ, Geneva, October 7 to 11, 1996 (No. CTD/WHOPES/IC/96.1); World Health Organization, 1996.

Abbott W. S. J. Econ. Entomol. 1925, 18 (2), 265–267. 10.1093/jee/18.2.265a. DOI

Finney D. J.Probit Analysis; Cambridge University Press: London, 1971.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...