Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37172063
PubMed Central
PMC10226105
DOI
10.1021/acs.jnatprod.3c00137
Knihovny.cz E-zdroje
- MeSH
- Asteraceae * chemie MeSH
- Culex * MeSH
- insekticidy * farmakologie MeSH
- komáří přenašeči MeSH
- larva MeSH
- lidé MeSH
- oleje prchavé * farmakologie chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- carlina oxide MeSH Prohlížeč
- insekticidy * MeSH
- oleje prchavé * MeSH
Compounds isolated from botanical sources represent innovative and promising alternatives to conventional insecticides. Carlina oxide is a compound isolated from Carlina acaulis L. (Asteraceae) essential oil (EO) with great potential as bioinsecticide, being effective on various arthropod vectors and agricultural pests, with moderate toxicity on non-target species. Since the production from the wild source is limited, there is the need of exploring new synthetic routes for obtaining this compound and analogues with improved bioactivity and lower toxicity. Herein, the chemical synthesis of carlina oxide analogues was developed. Their insecticidal activity was assessed on the vectors Musca domestica L. and Culex quinquefasciatus Say, and their cytotoxicity was evaluated on a human keratinocyte cell line (HaCaT). The compounds' activity was compared with that of the natural counterparts EO and carlina oxide. In housefly tests, the analogues were comparably effective to purified carlina oxide. In Cx. quinquefasciatus assays, the meta-chloro analogue provided a significantly higher efficacy (LC50 of 0.71 μg mL-1) than the EO and carlina oxide (LC50 1.21 and 1.31 μg mL-1, respectively) and a better safety profile than carlina oxide on keratinocytes. Overall, this study can open the way to an agrochemical production of carlina oxide analogues employable as nature-inspired insecticides.
Crop Research Institute Drnovska 507 161 06 Prague 6 Czech Republic
School of Pharmacy University of Camerino Via Madonna delle Carceri 9 C 62032 Camerino Italy
Zobrazit více v PubMed
Benelli G.; Beier J. C. Acta Trop. 2017, 174, 91–96. 10.1016/j.actatropica.2017.06.028. PubMed DOI
Blindauer K. M.; Jackson R. J.; McGeehin M.; Pertowski C.; Rubin C. J. Environ. Health 1999, 61 (10), 9.
Desneux N.; Decourtye A.; Delpuech J. M. Annu. Rev. Entomol. 2007, 52, 81–106. 10.1146/annurev.ento.52.110405.091440. PubMed DOI
Guedes R. N. C.; Benelli G.; Agathokleous E. Curr. Opin. Environ. Sci. Health 2022, 28, 100371.10.1016/j.coesh.2022.100371. DOI
Mossa A. T. H.; Mohafrash S. M.; Chandrasekaran N. Biomed. Res. Int. 2018, 2018, 1–17. 10.1155/2018/4308054. PubMed DOI PMC
Souto A. L.; Sylvestre M.; Tölke E. D.; Tavares J. F.; Barbosa-Filho J. M.; Cebrián-Torrejón G. Molecules 2021, 26 (16), 4835.10.3390/molecules26164835. PubMed DOI PMC
Giunti G.; Benelli G.; Palmeri V.; Laudani F.; Ricupero M.; Ricciardi R.; et al. Biol. Control 2022, 176, 105071.10.1016/j.biocontrol.2022.105071. DOI
Isman M. B. Annu. Rev. Entomol. 2020, 65, 233–249. 10.1146/annurev-ento-011019-025010. PubMed DOI
Pavela R.; Benelli G. Trends Plant Sci. 2016, 21 (12), 1000–1007. 10.1016/j.tplants.2016.10.005. PubMed DOI
Tutin F. G.; Heywood V. H.; Burges N. A.; Moore D. M.; Valentine D. H.; Walters S. M.; Webb D. A. In Flora Europea, Vol. 4; Plantaginaceae to Compositae (and Rubiaceae); Tutin F. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A, Eds.; Cambridge University Press: Cambridge, 1976; p 210.
Belabbes R.; Mami I. R.; Dib M. E.; Mejdoub K.; Tabti B.; Costa J.; Muselli A. Curr. Nutr. Food Sci. 2020, 16 (4), 563–570. 10.2174/1573401315666190206142929. DOI
Herrmann F.; Hamoud R.; Sporer F.; Tahrani A.; Wink M. Planta Med. 2011, 77 (17), 1905–1911. 10.1055/s-0031-1279984. PubMed DOI
Stojanović-Radić Z.; Čomić L.; Radulović N.; Blagojević P.; Mihajilov-Krstev T.; Rajković J. Pharm. Biol. 2012, 50 (8), 933–940. 10.3109/13880209.2011.649214. PubMed DOI
Strzemski M.; Wójciak-Kosior M.; Sowa I.; Załuski D.; Verpoorte R. J. Ethnopharmacol. 2019, 239, 111842.10.1016/j.jep.2019.111842. PubMed DOI
Rosato A.; Barbarossa A.; Mustafa A. M.; Bonacucina G.; Perinelli D. R.; Petrelli R.; et al. Antibiotics 2021, 10 (12), 1451.10.3390/antibiotics10121451. PubMed DOI PMC
Grisebach H.; Ebel J. Angew. Chem., Int. Ed. Engl. 1978, 17 (9), 635–647. 10.1002/anie.197806351. DOI
Kavallieratos N. G.; Nika E. P.; Skourti A.; Spinozzi E.; Ferrati M.; Petrelli R.; et al. Ind. Crops Prod. 2022, 188, 115572.10.1016/j.indcrop.2022.115572. DOI
Pavela R.; Maggi F.; Petrelli R.; Cappellacci L.; Buccioni M.; Palmieri A.; et al. Food Chem. Toxicol. 2020, 136, 111037.10.1016/j.fct.2019.111037. PubMed DOI
Rizzo R.; Pistillo M.; Germinara G. S.; Lo Verde G.; Sinacori M.; Maggi F.; et al. Insects 2021, 12 (10), 880.10.3390/insects12100880. PubMed DOI PMC
Spinozzi E.; Ferrati M.; Cappellacci L.; Caselli A.; Perinelli D. R.; Bonacucina G.; et al. Ind. Crops Prod. 2023, 192, 116076.10.1016/j.indcrop.2022.116076. DOI
Benelli G.; Ceccarelli C.; Zeni V.; Rizzo R.; Verde G. L.; Sinacori M.; et al. Chemosphere 2022, 287, 132089.10.1016/j.chemosphere.2021.132089. PubMed DOI
Pavela R.; Pavoni L.; Bonacucina G.; Cespi M.; Cappellacci L.; Petrelli R.; et al. J. Pest Sci. 2021, 94 (3), 899–915. 10.1007/s10340-020-01327-2. DOI
Hinkle N. C.; Hogsette J. A. Insects 2021, 12 (11), 1042.10.3390/insects12111042. PubMed DOI PMC
Samy A. M.; Elaagip A. H.; Kenawy M. A.; Ayres C. F.; Peterson A. T.; Soliman D. E. PloS One 2016, 11, e0163863.10.1371/journal.pone.0163863. PubMed DOI PMC
Wilke A. B.; Beier J. C.; Benelli G. Entomol. Gen. 2020, 40, 15–24. 10.1127/entomologia/2019/0776. DOI
Hameury T.; Guillemont J.; Van Hijfte L.; Bellosta V.; Cossy J. Org. Lett. 2009, 11 (11), 2397–2400. 10.1021/ol900494g. PubMed DOI
Konno H.; Sato T.; Saito Y.; Sakamoto I.; Akaji K. Bioorg. Med. Chem. Lett. 2015, 25 (22), 5127–5132. 10.1016/j.bmcl.2015.10.007. PubMed DOI
Louvel J.; Carvalho J. F. S.; Yu Z.; Soethoudt M.; Lenselink E. B.; Klaasse E.; Brussee J.; IJzerman A. P. J. Med. Chem. 2013, 56 (23), 9427–9440. 10.1021/jm4010434. PubMed DOI
Tomas-Mendivil E.; Starck J.; Ortuno J. C.; Michelet V. Org. lett. 2015, 17 (24), 6126–6129. 10.1021/acs.orglett.5b03146. PubMed DOI
Mami I. R.; Amina T. Z.; Pérard J.; Arrar Z.; Dib M. E. Comb. Chem. High Throughput Screen. 2021, 24 (9), 1503–1513. 10.2174/1386207323999201103214141. PubMed DOI
Benelli G.; Pavela R.; Petrelli R.; Nzekoue F. K.; Cappellacci L.; Lupidi G.; et al. Ind. Crops Prod. 2019, 137, 356–366. 10.1016/j.indcrop.2019.05.037. DOI
Birkenmeyer R. D.; Kagan F. J. Med. Chem. 1970, 13 (4), 616–619. 10.1021/jm00298a007. PubMed DOI
Harris C. M.; Kannan R.; Kopecka H.; Harris T. M. J. Am. Chem. Soc. 1985, 107 (23), 6652–6658. 10.1021/ja00309a038. DOI
Golakoti T.; Ogino J.; Heltzel C. E.; Le Husebo T.; Jensen C. M.; Larsen L. K.; et al. J. Am. Chem. Soc. 1995, 117 (49), 12030–12049. 10.1021/ja00154a002. DOI
Nagaoka H.; Miyakoshi T.; Kasuga J. I.; Yamada Y. Tetrahedron Lett. 1985, 26 (41), 5053–5056. 10.1016/S0040-4039(01)80851-0. DOI
Naumann K. Pest Manag. Sci. 2000, 56 (1), 3–21. 10.1002/(SICI)1526-4998(200001)56:1<3::AID-PS107>3.0.CO;2-P. DOI
Pavić K.; Perković I.; Cindrić M.; Pranjić M.; Martin-Kleiner I.; Kralj M.; et al. Eur. J. Med. Chem. 2014, 86, 502–514. 10.1016/j.ejmech.2014.09.013. PubMed DOI
Caldas E. D.. In Sustainable Agrochemistry: A Compendium of Technologies; Toxicological Aspects of Pesticides; Vaz S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp 275–305.
ISO 10993-5. In Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity; International Organization for Standardization, 2009.
Larsen C. H.; Anderson K. W.; Tundel R. E.; Buchwald S. L. Synlett. 2006, 2006 (18), 2941–2946. 10.1055/s-2006-949625. DOI
Gilman H.; Wright G. F. J. Am. Chem. Soc. 1933, 55 (8), 3302–3314. 10.1021/ja01335a043. DOI
Yang X.; Ge S. Organometallics 2022, 41 (14), 1823–1828. 10.1021/acs.organomet.2c00053. DOI
Kinena L.; Leitis G.; Kanepe-Lapsa I.; Bobrovs R.; Jaudzems K.; Ozola V.; Suna E.; Jirgensons A. Arch. Pharm. 2018, 351 (9), 1800151.10.1002/ardp.201800151. PubMed DOI
Henrion G.; Chavas T. E.; Le Goff X.; Gagosz F. Angew. Chem. 2013, 125 (24), 6397–6402. 10.1002/ange.201301015. PubMed DOI
Benelli G.; Pavoni L.; Zeni V.; Ricciardi R.; Cosci F.; Cacopardo G.; Gendusa S.; Spinozzi E.; Petrelli R.; Cappellacci L.; Maggi F.; Pavela R.; Bonacucina G.; Lucchi A. Nanomaterials 2020, 10, 1867.10.3390/nano10091867. PubMed DOI PMC
Pavela R. Ind. Crops Prod. 2013, 43, 745–750. 10.1016/j.indcrop.2012.08.025. DOI
World Health Organization. Report of the WHO Informal Consultation on the “Evaluation and Testing of Insecticides”, WHO/HQ, Geneva, October 7 to 11, 1996 (No. CTD/WHOPES/IC/96.1); World Health Organization, 1996.
Abbott W. S. J. Econ. Entomol. 1925, 18 (2), 265–267. 10.1093/jee/18.2.265a. DOI
Finney D. J.Probit Analysis; Cambridge University Press: London, 1971.