Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31505756
PubMed Central
PMC6781030
DOI
10.3390/nano9091285
PII: nano9091285
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural pests, dengue, filariasis, insecticides, larvicides, mosquito control, stored product insects,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The management of parasites, insect pests and vectors requests development of novel, effective and eco-friendly tools. The development of resistance towards many drugs and pesticides pushed scientists to look for novel bioactive compounds endowed with multiple modes of action, and with no risk to human health and environment. Several natural products are used as alternative/complementary approaches to manage parasites, insect pests and vectors due to their high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps overcome some hurdles related to their physicochemical properties, for instance limited stability and handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising eco-friendly tools in pest and vector management, pending proper field validation. Future research on the improvement of technical aspects as well as chronic toxicity experiments on non-target species is needed.
Crop Research Institute Drnovska 507 161 06 Prague 6 Ruzyne Czech Republic
Department of Translational Research N T M S University of Pisa 56124 Pisa Italy
School of Pharmacy University of Camerino via Sant'Agostino 62032 Camerino Italy
Zobrazit více v PubMed
Anton N., Vandamme T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011;28:978–985. doi: 10.1007/s11095-010-0309-1. PubMed DOI
Tadros T., Izquierdo P., Esquena J., Solans C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004;108:303–318. doi: 10.1016/j.cis.2003.10.023. PubMed DOI
Talegaonkar S., Azeem A., Ahmad F., Khar R., Pathan S., Khan Z. Microemulsions: A Novel Approach to Enhanced Drug Delivery. Recent Pat. Drug Deliv. 2008;2:238–257. doi: 10.2174/187221108786241679. PubMed DOI
Gasco M.R. Microemulsions in the pharmaceutical field: Perspectives and applications. Surfactant Sci. Ser. 1997;66:97–122.
McClements D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012;8:1719–1729. doi: 10.1039/C2SM06903B. DOI
Rao J., McClements D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011;59:5026–5035. doi: 10.1021/jf200094m. PubMed DOI
Danielsson I., Lindman B. The definition of microemulsion. Colloids Surf. 1981;3:391–392. doi: 10.1016/0166-6622(81)80064-9. DOI
Hoar T.P., Schulman J.H. Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle. Nature. 1943;152:102–103. doi: 10.1038/152102a0. DOI
Bera A., Mandal A. Microemulsions: A novel approach to enhanced oil recovery: A review. J. Pet. Explor. Prod. Technol. 2015;5:255–268. doi: 10.1007/s13202-014-0139-5. DOI
Pavoni L., Benelli G., Maggi F., Bonacucina G. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. Green nanoemulsion interventions for biopesticide formulations; pp. 133–160.
Venhuis S.H., Mehrvar M. Health effects, environmental impacts, and photochemical degradation of selected surfactants in water. Int. J. Photoenergy. 2004;6:115–125. doi: 10.1155/S1110662X04000157. DOI
Wilhelm K.P., Cua A.B., Wolff H.H., Maibach H.I. Surfactant-induced stratum corneum hydration in vivo: Prediction of the irritation potential of anionic surfactants. J. Investig. Dermatol. 1993;101:310–315. doi: 10.1111/1523-1747.ep12365467. PubMed DOI
Lawrence M.J., Rees G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012;64:175–193. doi: 10.1016/j.addr.2012.09.018. PubMed DOI
Schulman J.H., Stoeckenius W., Prince L.M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. J. Phys. Chem. 1959;63:1677–1680. doi: 10.1021/j150580a027. DOI
Alany R.G., Rades T., Agatonovic-Kustrin S., Davies N.M., Tucker I.G. Effects of alcohols and diols on the phase behaviour of quaternary systems. Int. J. Pharm. 2000;196:141–145. doi: 10.1016/S0378-5173(99)00408-1. PubMed DOI
Lam A.C., Schechter R.S. The theory of diffusion in microemulsion. J. Colloid Interface Sci. 1987;120:56–63. doi: 10.1016/0021-9797(87)90322-5. DOI
Salvia-Trujillo L., Rojas-Graü M.A., Soliva-Fortuny R., Martín-Belloso O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013;30:401–407. doi: 10.1016/j.foodhyd.2012.07.004. DOI
Chang Y., McClements D.J. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: Influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem. 2014;62:2306–2312. doi: 10.1021/jf500160y. PubMed DOI
Tadros T. In: Ostwald Ripening BT Encyclopedia of Colloid and Interface Science. Tadros T., editor. Springer; Berlin/Heidelberg, Germany: 2013. p. 820.
Chang Y., McLandsborough L., McClements D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. J. Agric. Food Chem. 2012;60:12056–12063. doi: 10.1021/jf304045a. PubMed DOI
Donsì F., Annunziata M., Vincensi M., Ferrari G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol. 2012;159:342–350. doi: 10.1016/j.jbiotec.2011.07.001. PubMed DOI
Terjung N., Löffler M., Gibis M., Hinrichs J., Weiss J. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct. 2012;3:290–301. doi: 10.1039/C2FO10198J. PubMed DOI
Shah D., Micelles D.O. Microemulsions and Monolayers: Science and Technology. CRC Press; New York, NY, USA: 1998.
Holmberg K. Organic and bioorganic reactions in microemulsions. Adv. Colloid Interface Sci. 1994;51:137–174. doi: 10.1016/0001-8686(94)80035-9. DOI
Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003;8:137–144. doi: 10.1016/S1359-0294(03)00019-0. DOI
Yu H., Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 2012;60:5373–5379. doi: 10.1021/jf300609p. PubMed DOI
Saifullah M., Ahsan A., Shishir M.R.I. Production, Stability and Application of Micro and Nanoemulsion in Food Production and the food Processing Industry. Emulsions. 2016;3:405–442. doi: 10.1016/B978-0-12-804306-6.00012-X. DOI
Chee C.P., Gallaher J.J., Djordjevic D., Faraji H., McClements D.J., Decker E.A., Hollender R., Peterson D.G., Roberts R.F., Coupland J.N. Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. J. Dairy Res. 2005;72:311–316. doi: 10.1017/S0022029905001068. PubMed DOI
Silva H.D., Cerqueira M.Â., Vicente A.A. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol. 2012;5:854–867. doi: 10.1007/s11947-011-0683-7. DOI
Donsi F., Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016;233:106–120. doi: 10.1016/j.jbiotec.2016.07.005. PubMed DOI
Alexandre E.M.C., Lourenço R.V., Bittante A.M.Q.B., Moraes I.C.F., do Amaral Sobral P.J. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life. 2016;10:87–96. doi: 10.1016/j.fpsl.2016.10.004. DOI
Flanagan J., Singh H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 2006;46:221–237. doi: 10.1080/10408690590956710. PubMed DOI
Kralova I., Sjöblom J. Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 2009;30:1363–1383. doi: 10.1080/01932690902735561. DOI
Araya H., Tomita M., Hayashi M. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int. J. Pharm. 2005;305:61–74. doi: 10.1016/j.ijpharm.2005.08.022. PubMed DOI
Bonacucina G., Cespi M., Misici-falzi M., Palmieri G.F. Colloidal Soft Matter as Drug Delivery System. J. Pharm. Sci. 2009;98:1–42. doi: 10.1002/jps.21423. PubMed DOI
Paul B.K., Moulik S.P. Uses and applications of microemulsions. Curr. Sci. Assoc. 2001;80:990–1001.
Kim C.K., Cho Y.J., Gao Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release. 2001;70:149–155. doi: 10.1016/S0168-3659(00)00343-6. PubMed DOI
Yin Y.M., Cui F.D., Mu C.F., Choi M.K., Kim J.S., Chung S.J., Shim C.K., Kim D.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J. Control. Release. 2009;140:86–94. doi: 10.1016/j.jconrel.2009.08.015. PubMed DOI
Von Corswant C., Thorén P., Engström S. Triglyceride-based microemulsion for intravenous administration of sparingly soluble substances. J. Pharm. Sci. 1998;87:200–208. doi: 10.1021/js970258w. PubMed DOI
Đorđević S.M., Santrač A., Cekić N.D., Marković B.D., Divović B., Ilić T.M., Savić M.M., Savić S.D. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. Int. J. Pharm. 2017;533:421–430. doi: 10.1016/j.ijpharm.2017.05.051. PubMed DOI
Gupta S., Moulik S.P. Biocompatible microemulsions and their prospective uses in drug delivery. J. Pharm. Sci. 2008;97:22–45. doi: 10.1002/jps.21177. PubMed DOI
Majeed A., Bashir R., Farooq S., Maqbool M. Preparation, Characterization and Applications of Nanoemulsions: An Insight. J. Drug Deliv. 2019;9:520–527. doi: 10.22270/jddt.v9i2.2410. DOI
Vyas T.K., Babbar A.K., Sharma R.K., Singh S., Misra A. Intranasal Mucoadhesive Microemulsions of Clonazepam: Preliminary Studies on Brain Targeting. J. Pharm. Sci. 2006;95:570–580. doi: 10.1002/jps.20480. PubMed DOI
Shiokawa T., Hattori Y., Kawano K., Ohguchi Y., Kawakami H., Toma K., Maitani Y. Effect of polyethylene glycol linker chain length of folate-linked microemulsions loading aclacinomycln A on targeting ability and antitumor effect in vitro and in vivo. Clin. Cancer Res. 2005;11:2018–2025. doi: 10.1158/1078-0432.CCR-04-1129. PubMed DOI
Medina-Pérez G., Fernández-Luqueño F., Campos-Montiel R.G., Sánchez-López K.B., Afanador-Barajas L.N., Prince L. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. Nanotechnology in crop protection: Status and future trends; pp. 17–45.
Khater H., Govindarajan M., Benelli G. Natural Remedies in the Fight Against Parasites. InTech, BoD–Books on Demand; London, UK: 2017.
Du Z., Wang C., Tai X., Wang G., Liu X. Optimization and Characterization of Biocompatible Oil-in-Water Nanoemulsion for Pesticide Delivery. ACS Sustain. Chem. Eng. 2016;4:983–991. doi: 10.1021/acssuschemeng.5b01058. DOI
Perlatti B., de Souza Bergo P.L., Fernandes J.B., Forim M.R. Insecticides-Development of Safer and More Effective Technologies. IntechOpen; London, UK: 2013. Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals.
Song S., Liu X., Jiang J., Qian Y., Zhang N., Wu Q. Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf. A Physicochem. Eng. Asp. 2009;350:57–62. doi: 10.1016/j.colsurfa.2009.08.034. DOI
Lubbe A., Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011;34:785–801. doi: 10.1016/j.indcrop.2011.01.019. DOI
Fahn A. Structure and function of secretory cells. Adv. Bot. Res. 2000;31:37–75.
Isman M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006;51:45–66. doi: 10.1146/annurev.ento.51.110104.151146. PubMed DOI
Chen M., Chang C.H., Tao L., Lu C. Residential exposure to pesticide during childhood and childhood cancers: A meta-analysis. Pediatrics. 2015;136:719–729. doi: 10.1542/peds.2015-0006. PubMed DOI
Goulson D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013;50:977–987. doi: 10.1111/1365-2664.12111. DOI
McCaffery A., Nauen R. The insecticide resistance action committee (IRAC): Public responsibility and enlightened industrial self-interest. Outlooks Pest Manag. 2006;17:11–14.
Thakore Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2006;2:194–208. doi: 10.1089/ind.2006.2.194. DOI
Isman M.B. A renaissance for botanical insecticides? Pest Manag. Sci. 2015;71:1587–1590. doi: 10.1002/ps.4088. PubMed DOI
Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016;52:229–241.
Isman M.B. Problems and opportunities for the commercialization of botanical insecticides. In: Regnault-Roger C., Philogene B.J.R., Vincent C., editors. Biopesticides of Plant Origin. Lavoisier; Paris, France: 2005. pp. 283–291.
Collins D.A. A review of alternatives to organophosphorus compounds for the control of storage mites. J. Stored Prod. Res. 2006;42:395–426. doi: 10.1016/j.jspr.2005.08.001. DOI
Singh A., Srivastava V.K. Toxic effect of synthetic pyrethroid permethrin on the enzyme system of the freshwater fish Channa striatus. Chemosphere. 1999;39:1951–1956. doi: 10.1016/S0045-6535(99)00078-8. PubMed DOI
Guleria S., Jammu T. Integrated Pest Management: Innovation-Development Process. Springer; Dordrecht, The Netherlands: Heidelberg, Germany: 2009.
Benelli G., Canale A., Toniolo C., Higuchi A., Murugan K., Pavela R., Nicoletti M. Neem (Azadirachta indica): Towards the ideal insecticide? Nat. Prod. Res. 2017;31:369–386. doi: 10.1080/14786419.2016.1214834. PubMed DOI
Raizada R.B., Srivastava M.K., Kaushal R.A., Singh R.P. Azadirachtin, a neem biopesticide: Subchronic toxicity assessment in rats. Food Chem. Toxicol. 2001;39:477–483. doi: 10.1016/S0278-6915(00)00153-8. PubMed DOI
Mehlhorn H., Al-Rasheid K.A.S., Abdel-Ghaffar F. Nature Helps. Springer; Heidelberg, Germany: 2011. The Neem tree story: Extracts that really work; pp. 77–108.
Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Stroh J., Wan M.T., Isman M.B., Moul D.J. Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull. Environ. Contam. Toxicol. 1998;60:923–930. doi: 10.1007/s001289900716. PubMed DOI
Pavela R., Benelli G., Pavoni L., Bonacucina G., Cespi M., Cianfaglione K., Bajalan I., Morshedloo M.R., Lupidi G., Romano D., et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019;129:631–640. doi: 10.1016/j.indcrop.2018.11.073. DOI
Dubey N.K. Natural Products in Plant Pest Management. CABI; Wallingford, UK: 2011.
Isman M.B. Botanical Insecticides, Deterrents, Repellents and Oils. CABI; Oxfordsh, UK: 2010. pp. 433–445.
Koul O., Walia S., Dhaliwal G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008;4:63–84.
Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015;76:174–187. doi: 10.1016/j.indcrop.2015.06.050. DOI
Rattan R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29:913–920. doi: 10.1016/j.cropro.2010.05.008. DOI
Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI
Tian J., Ban X., Zeng H., He J., Chen Y., Wang Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE. 2012;7:e30147. doi: 10.1371/journal.pone.0030147. PubMed DOI PMC
Ceylan E., Fung D.Y.C. Antimicrobial activity of spices 1. J. Rapid Methods Autom. Microbiol. 2004;12:1–55. doi: 10.1111/j.1745-4581.2004.tb00046.x. DOI
Di Pasqua R., Hoskins N., Betts G., Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006;54:2745–2749. doi: 10.1021/jf052722l. PubMed DOI
Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharm. 2001;130:325–337. doi: 10.1016/S1532-0456(01)00255-1. PubMed DOI
Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules. 2018;23:34. doi: 10.3390/molecules23010034. PubMed DOI PMC
Mills C., Cleary B.V., Walsh J.J., Gilmer J.F. Inhibition of acetylcholinesterase by tea tree oil. J. Pharm. Pharm. 2004;56:375–379. doi: 10.1211/0022357022773. PubMed DOI
Priestley C.M., Williamson E.M., Wafford K.A., Sattelle D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo–oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharm. 2003;140:1363–1372. doi: 10.1038/sj.bjp.0705542. PubMed DOI PMC
Enan E.E. Molecular response of Drosophila Melanogaster Tyramine Receptor Cascade to Plant Essential Oils. Insect Biochem. Mol. Biol. 2005;35:309–321. doi: 10.1016/j.ibmb.2004.12.007. PubMed DOI
Isman M.B. Plant essential oils for pest and disease management. Crop Prot. 2000;19:603–608. doi: 10.1016/S0261-2194(00)00079-X. DOI
Benelli G., Pavela R., Canale A., Cianfaglione K., Ciaschetti G., Conti F., Nicoletti M., Senthil-Nathan S., Mehlhorn H., Maggi F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017;66:166–171. doi: 10.1016/j.parint.2017.01.012. PubMed DOI
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Turek C., Stintzing F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI
Isman M.B., Miresmailli S., Machial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011;10:197–204. doi: 10.1007/s11101-010-9170-4. DOI
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res. 2016;115:23–34. doi: 10.1007/s00436-015-4800-9. PubMed DOI
Haldar K.M., Haldar B., Chandra G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol. Res. 2013;112:1451–1459. doi: 10.1007/s00436-013-3288-4. PubMed DOI
Benelli G. Gold nanoparticles–against parasites and insect vectors. Acta Trop. 2018;178:73–80. doi: 10.1016/j.actatropica.2017.10.021. PubMed DOI
Arjunan N.K., Murugan K., Rejeeth C., Madhiyazhagan P., Barnard D.R. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis. 2012;12:262–268. doi: 10.1089/vbz.2011.0661. PubMed DOI
Ghormade V., Deshpande M.V., Paknikar K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011;29:792–803. doi: 10.1016/j.biotechadv.2011.06.007. PubMed DOI
Pavela R., Murugan K., Canale A., Benelli G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017;97:338–344. doi: 10.1016/j.indcrop.2016.12.046. DOI
Cespi M., Quassinti L., Perinelli D.R., Bramucci M., Iannarelli R., Papa F., Ricciutelli M., Bonacucina G., Palmieri G.F., Maggi F. Microemulsions enhance the shelf-life and processability of Smyrnium olusatrum L. essential oil. Flavour Fragr. J. 2017;32:159–164. doi: 10.1002/ffj.3367. DOI
Pavela R., Pavoni L., Bonacucina G., Cespi M., Kavallieratos N.G., Cappellacci L., Petrelli R., Maggi F., Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019;92:909–921. doi: 10.1007/s10340-018-01076-3. DOI
Osman Mohamed Ali E., Shakil N.A., Rana V.S., Sarkar D.J., Majumder S., Kaushik P., Singh B.B., Kumar J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod. 2017;108:379–387. doi: 10.1016/j.indcrop.2017.06.061. DOI
Pavoni L., Maggi F., Mancianti F., Nardoni S., Ebani V.V., Cespi M., Bonacucina G., Palmieri G.F. Microemulsions: An effective encapsulation tool to enhance the antimicrobial activity of selected EOs. J. Drug Deliv. Sci. Technol. 2019 doi: 10.1016/j.jddst.2019.05.050. DOI
Liang R., Xu S., Shoemaker C.F., Li Y., Zhong F., Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem. 2012;60:7548–7555. doi: 10.1021/jf301129k. PubMed DOI
Sasson Y., Levy-Ruso G., Toledano O., Ishaaya I. Insecticides Design Using Advanced Technologies. Springer; Berlin, Germany: 2007. Nanosuspensions: Emerging novel agrochemical formulations; pp. 1–39.
Salvia-Trujillo L., Rojas-Graü A., Soliva-Fortuny R., Martín-Belloso O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015;43:547–556. doi: 10.1016/j.foodhyd.2014.07.012. DOI
Zhao N.N., Zhang H., Zhang X.C., Luan X.B., Zhou C., Liu Q.Z., Shi W.P., Liu Z.L. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae) J. Econ. Entomol. 2013;106:1349–1354. doi: 10.1603/EC12191. PubMed DOI
Mann R.S., Tiwari S., Smoot J.M., Rouseff R.L., Stelinski L.L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae) J. Appl. Entomol. 2012;136:87–96. doi: 10.1111/j.1439-0418.2010.01592.x. DOI
González W.J.O., Gutiérrez M.M., Murray A.P., Ferrero A.A. Composition and biological activity of essential oils from Labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Manag. Sci. 2011;67:948–955. doi: 10.1002/ps.2138. PubMed DOI
Tian B.L., Liu Q.Z., Liu Z.L., Li P., Wang J.W. Insecticidal Potential of Clove Essential Oil and Its Constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in Laboratory and Field. J. Econ. Entomol. 2015;108:957–961. doi: 10.1093/jee/tov075. PubMed DOI
Fernandes C.P., de Almeida F.B., Silveira A.N., Gonzalez M.S., Mello C.B., Feder D., Apolinário R., Santos M.G., Carvalho J.C.T., Tietbohl L.A.C., et al. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J. Nanobiotechnol. 2014;12:1–9. doi: 10.1186/1477-3155-12-22. PubMed DOI PMC
Fernandes C.P., Xavier A., Pacheco J.P.F., Santos M.G., Mexas R., Ratcliffe N.A., Gonzalez M.S., Mello C.B., Rocha L., Feder D. Laboratory evaluation of the effects of Manilkara subsericea (Mart.) Dubard extracts and triterpenes on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest Manag. Sci. 2013;69:292–301. doi: 10.1002/ps.3388. PubMed DOI
Stanisçuaski F., Ferreira-DaSilva C.T., Mulinari F., Pires-Alves M., Carlini C.R. Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) Toxicon. 2005;45:753–760. doi: 10.1016/j.toxicon.2005.01.014. PubMed DOI
Gutiérrez C., Fereres A., Reina M., Cabrera R., González-Coloma A. Behavioral and Sublethal Effects of Structurally Related Lower Terpenes on Myzus persicae. J. Chem. Ecol. 1997;23:1641–1650. doi: 10.1023/B:JOEC.0000006428.00568.c5. DOI
Santana O., Cabrera R., Gimenez C., González-Coloma A., Sánchez-Vioque R., De los Mozos-Pascual M., Rodríguez-Conde M.F., Laserna-Ruiz I., Usano-Alemany J., Herraiz D. Perfil químico y biológico de aceites esenciales de plantas aromáticas de interés agro-industrial en Castilla-La Mancha (España) Grasas Y Aceites. 2012;63
Blackman R.L., Eastop V.F. Aphids on the World’s Crops: An Identification and Information Guide. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2000.
Kalaitzaki A., Papanikolaou N.E., Karamaouna F., Dourtoglou V., Xenakis A., Papadimitriou V. Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: A structural and efficacy study. Langmuir. 2015;31:5722–5730. doi: 10.1021/acs.langmuir.5b00246. PubMed DOI
Pascual-Villalobos M.J., Cantó-Tejero M., Vallejo R., Guirao P., Rodríguez-Rojo S., Cocero M.J. Use of nanoemulsions of plant essential oils as aphid repellents. Ind. Crops Prod. 2017;110:45–57. doi: 10.1016/j.indcrop.2017.05.019. DOI
Blackman R.L., Eastop V.F. Taxonomic issues. Aphids Crop Pests. 2007:1–29.
James A.A. Mosquito molecular genetics: The hands that feed bite back. Science. 1992;257:37–39. doi: 10.1126/science.1352413. PubMed DOI
Jambulingam P., Subramanian S., de Vlas S.J., Vinubala C., Stolk W.A. Mathematical modelling of lymphatic filariasis elimination programmes in India: Required duration of mass drug administration and post-treatment level of infection indicators. Parasit. Vectors. 2016;9:501. doi: 10.1186/s13071-016-1768-y. PubMed DOI PMC
Benelli G., Romano D. Mosquito vectors of Zika virus. Entomol. Gen. 2017;36:309–318. doi: 10.1127/entomologia/2017/0496. DOI
Oliveira A.E.M.F.M., Duarte J.L., Cruz R.A.S., Souto R.N.P., Ferreira R.M.A., Peniche T., Conceição E.C., Oliveira L.A.R., Faustino S.M.M., Florentino A.C., et al. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnol. 2017;15:1–11. doi: 10.1186/s12951-016-0234-5. PubMed DOI PMC
Duarte J.L., Amado J.R.R., Oliveira A.E.M.F.M., Cruz R.A.S., Ferreira A.M., Souto R.N.P., Falcão D.Q., Carvalho J.C.T., Fernandesa C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Braz. J. Pharm. 2015;25:189–192. doi: 10.1016/j.bjp.2015.02.010. DOI
Ghosh V., Mukherjee A., Chandrasekaran N. Formulation and characterization of plant essential oil based nanoemulsion: Evaluation of its larvicidal activity against Aedes aegypti. Asian J. Chem. 2013;25:S321.
Balasubramani S., Rajendhiran T., Moola A.K., Kumari R., Diana B. Development of nanoemulsion from Vitex negundo Lessential oil and their efficacy of antioxidant antimicrobial and larvicidal activities (Aedes aegypti L.) ) Environ. Sci. Pollut. Res. 2017;24:15125–15133. doi: 10.1007/s11356-017-9118-y. PubMed DOI
Gaysinsky S., Taylor T.M., Davidson P.M., Bruce B.D. Antimicrobial Efficacy of Eugenol Microemulsions in Milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 2007;70:2631–2637. doi: 10.4315/0362-028X-70.11.2631. PubMed DOI
Anjali C., Sharma Y., Mukherjee A., Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 2012;68:158–163. doi: 10.1002/ps.2233. PubMed DOI
Sugumar S., Clarke S.K., Nirmala M.J., Tyagi B.K., Mukherjee A., Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014;104:393–402. doi: 10.1017/S0007485313000710. PubMed DOI
Dwivedy A.K., Singh V.K., Prakash B., Dubey N.K. Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food Chem. Toxicol. 2018;111:102–113. doi: 10.1016/j.fct.2017.11.007. PubMed DOI
Alonso-Amelot M.E., Avila-Núñez J.L. Comparison of seven methods for stored cereal losses to insects for their application in rural conditions. J. Stored Prod. Res. 2011;47:82–87. doi: 10.1016/j.jspr.2011.01.001. DOI
Magan N., Hope R., Cairns V., Aldred D. Epidemiology of Mycotoxin Producing Fungi. Springer; Berlin, Germany: 2003. Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain; pp. 723–730.
Hodges R.J., Robinson R., Hall D.R. Quinone contamination of dehusked rice by Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) J. Stored Prod. Res. 1996;32:31–37. doi: 10.1016/0022-474X(95)00036-7. DOI
Nenaah G.E. Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst) Ind. Crops Prod. 2014;53:252–260. doi: 10.1016/j.indcrop.2013.12.042. DOI
Hashem A.S., Awadalla S.S., Zayed G.M., Maggi F., Benelli G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—Insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018;25:18802–18812. doi: 10.1007/s11356-018-2068-1. PubMed DOI
Pant M., Dubey S., Patanjali P.K., Naik S.N., Sharma S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegrad. 2014;91:119–127. doi: 10.1016/j.ibiod.2013.11.019. DOI
Kesari V., Das A., Rangan L. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop. Biomass Bioenergy. 2010;34:108–115. doi: 10.1016/j.biombioe.2009.10.006. DOI
Sharma S., Verma M., Prasad R., Yadav D. Efficacy of non-edible oil seedcakes against termite (Odontotermes obesus) J. Sci. Ind. Res. 2011;70:1037–1041.
Mossa A.T.H., Abdelfattah N.A.H., Mohafrash S.M.M. Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granarius. Asian J. Crop Sci. 2017;9:50–62. doi: 10.3923/ajcs.2017.50.62. DOI
Choupanian M., Omar D., Basri M., Asib N. Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. J. Pestic. Sci. 2017;42:158–165. doi: 10.1584/jpestics.D17-032. PubMed DOI PMC
van der Goes van Naters W., Carlson J.R. Insects as chemosensors of humans and crops. Nature. 2006;444:302. doi: 10.1038/nature05403. PubMed DOI
Drapeau J., Verdier M., Touraud D., Kröckel U., Geier M., Rose A., Kunz W. Effective insect repellent formulation in both surfactantless and classical microemulsions with a long-lasting protection for human beings. Chem. Biodivers. 2009;6:934–947. doi: 10.1002/cbdv.200800225. PubMed DOI
Tavares M., da Silva M.R.M., de Oliveira de Siqueira L.B., Rodrigues R.A.S., Bodjolle-d’Almeira L., dos Santos E.P., Ricci-Júnior E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018;539:190–209. doi: 10.1016/j.ijpharm.2018.01.046. PubMed DOI
Pinto I.C., Cerqueira-Coutinho C.S., Santos E.P., Carmo F.A., Ricci-Junior E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev. Ind. Pharm. 2017;43:67–73. doi: 10.1080/03639045.2016.1220564. PubMed DOI
Rowland M., Freeman T., Downey G., Hadi A., Saeed M. DEET mosquito repellent sold through social marketing provides personal protection against malaria in an area of all–night mosquito biting and partial coverage of insecticide–treated nets: A case–control study of effectiveness. Trop. Med. Int. Heal. 2004;9:343–350. doi: 10.1046/j.1365-3156.2003.01183.x. PubMed DOI
Abou-Donia M.B. Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: Implications of Gulf War chemical exposures. J. Toxicol. Environ. Heal. Part A. 1996;48:35–56. doi: 10.1080/009841096161456. PubMed DOI
Qiu H., McCall J.W., Jun H.W. Formulation of topical insect repellent N, N-diethyl-m-toluamide (DEET): Vehicle effects on DEET in vitro skin permeation. Int. J. Pharm. 1998;163:167–176. doi: 10.1016/S0378-5173(97)00379-7. DOI
Moore S.J., Lenglet A., Hill N. Insect Repellents: Principles Methods, and Use. CRC Press; Boca Raton, FL, USA: 2006. Plant-based insect repellents.
Seyoum A., Pålsson K., Kung’a S., Kabiru E.W., Lwande W., Killeen G.F., Hassanali A., Knots B.G.J. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: Ethnobotanical studies and application by thermal expulsion and direct burning. Trans. R. Soc. Trop. Med. Hyg. 2002;96:225–231. doi: 10.1016/S0035-9203(02)90084-2. PubMed DOI
Rehman J.U., Ali A., Khan I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia. 2014;95:65–74. doi: 10.1016/j.fitote.2014.03.002. PubMed DOI
Jaenson T.G.T., Pålsson K., Borg-Karlson A.K. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006;43:113–119. doi: 10.1093/jmedent/43.1.113. PubMed DOI
Sukumar K., Perich M.J., Boobar L.R. Botanical derivatives in mosquito control: A review. J. Am. Mosq. Control Assoc. 1991;7:210–237. PubMed
Jantan I., Zaki Z.M. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. Asean Rev. Biodivers. Environ. Conserv. 1998;6:1–7.
Yang Y.C., Lee E.H., Lee H.S., Lee D.K., Ahn Y.J. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J. Am. Mosq. Control Assoc. 2004;20:146–149. PubMed
Nuchuchua O., Sakulku U., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. In Vitro Characterization and Mosquito (Aedes aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech. 2009;10:1234–1242. doi: 10.1208/s12249-009-9323-1. PubMed DOI PMC
Sakulku U., Nuchuchua O., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009;372:105–111. doi: 10.1016/j.ijpharm.2008.12.029. PubMed DOI
Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006;123–126:369–385. doi: 10.1016/j.cis.2006.05.014. PubMed DOI
Steib B.M. The Effect of Lactic Acid on Odour-Related Host Preference of Yellow Fever Mosquitoes. Chem. Senses. 2001;26:523–528. doi: 10.1093/chemse/26.5.523. PubMed DOI
Bernier U.R., Kline D.L., Posey K.H., Booth M.M., Yost R.A., Barnard D.R. Synergistic Attraction of Aedes aegypti (L.) to Binary Blends of L-Lactic Acid and Acetone, Dichloromethane, or Dimethyl Disulfide. J. Med. Entomol. 2009;40:653–656. doi: 10.1603/0022-2585-40.5.653. PubMed DOI
Navayan A., Moghimipour E., Khodayar M.J., Vazirianzadeh B., Siahpoosh A., Valizadeh M., Mansourzadeh Z. Evaluation of the Mosquito Repellent Activity of Nano-sized Microemulsion of Eucalyptus globulus Essential Oil Against Culicinae. Jundishapur J. Nat. Pharm. Prod. 2017;12 doi: 10.5812/jjnpp.55626. DOI
Miresmailli S., Isman M.B. Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J. Econ. Entomol. 2006;99:2015–2023. doi: 10.1093/jee/99.6.2015. PubMed DOI
Çalmaşur Ö., Aslan İ., Şahin F. Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 2006;23:140–146. doi: 10.1016/j.indcrop.2005.05.003. DOI
Laborda R., Manzano I., Gamón M., Gavidia I., Pérez-Bermúdez P., Boluda R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae) Ind. Crops Prod. 2013;48:106–110. doi: 10.1016/j.indcrop.2013.04.011. DOI
Han J., Kim S., Choi B., Lee S., Ahn Y. Fumigant toxicity of lemon eucalyptus oil constituents to acaricide–Susceptible and acaricide–Resistant Tetranychus urticae. Pest Manag. Sci. 2011;67:1583–1588. doi: 10.1002/ps.2216. PubMed DOI
Choi W.I., Lee S.G., Park H.M., Ahn Y.J. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) J. Econ. Entomol. 2004;97:553–558. doi: 10.1603/0022-0493-97.2.553. PubMed DOI
Xu J., Fan Q.J., Yin Z.Q., Li X.T., Du Y.H., Jia R.Y., Wang K.Y., Lv C., Ye G., Geng Y., et al. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet. Parasitol. 2010;169:399–403. doi: 10.1016/j.vetpar.2010.01.016. PubMed DOI
Chaisri W., Chaiyana W., Pikulkaew S., Okonogi S., Suriyasathaporn W. Enhancement of acaricide activity of citronella oil after microemulsion preparation. Jpn. J. Vet. Res. 2019;67:15–23. doi: 10.14943/jjvr.67.1.15. DOI
Pedrini N., Ortiz-Urquiza A., Zhang S., Keyhani N. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria Bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 2013;4:24. doi: 10.3389/fmicb.2013.00024. PubMed DOI PMC
dos Santos D.S., Boito J.P., Santos R.C.V., Quatrin P.M., Ourique A.F., dos Reis J.H., Gebert R.R., Glombowsky P., Klauck V., Boligon A.A., et al. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Exp. Appl. Acarol. 2017;73:129–138. doi: 10.1007/s10493-017-0171-5. PubMed DOI
Federal U., Maria D.S., Maria S., Maria S., Federal U., Maria D.S., Catarina S. Archivos de Zootecnia. Agric. Biol. Sci. Anim. Sci. Zool. 2018;67:494–498.
Volpato A., Grosskopf R.K., Santos R.C., Vaucher R.A., Raffin R.P., Boligon A.A., Athayde M.L., Stefani L.M., Da Silva A.S. Influence of rosemary, andiroba and copaiba essential oils on different stages of the biological cycle of the tick Rhipicephalus microplus in vitro. J. Essent. Oil Res. 2015;27:244–250. doi: 10.1080/10412905.2015.1010045. DOI
Mossa A.T.H., Afia S.I., Mohafrash S.M.M., Abou-Awad B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae) Environ. Sci. Pollut. Res. 2018;25:10526–10537. doi: 10.1007/s11356-017-0752-1. PubMed DOI
Badawy M.E.I., Abdelgaleil S.A.M., Mahmoud N.F., Marei A.E.S.M. Preparation and characterizations of essential oil and monoterpene nanoemulsions and acaricidal activity against two-spotted spider mite (Tetranychus urticae Koch) Int. J. Acarol. 2018;44:330–340. doi: 10.1080/01647954.2018.1523225. DOI
Echeverría J., de Albuquerque D.G., Diego R. Nanoemulsions of essential oils: New tool for control of vector–borne diseases and in vitro effects on some parasitic agents. Medicines. 2019;6:42. doi: 10.3390/medicines6020042. PubMed DOI PMC
Montoya J.G., Liesenfeld O. Toxoplasmosis. Lancet. 2004;363:1965–1976. doi: 10.1016/S0140-6736(04)16412-X. PubMed DOI
Pinto B., Mattei R., Moscato G.A., Cristofano M., Giraldi M., Scarpato R., Buffolano W., Bruschi F. Toxoplasma infection in individuals in central Italy: Does a gender-linked risk exist? Eur. J. Clin. Microbiol. Infect. Dis. 2017;36:739–746. doi: 10.1007/s10096-016-2857-8. PubMed DOI
Dunay I.R., Gajurel K., Dhakal R., Liesenfeld O., Montoya J.G. Treatment of toxoplasmosis: Historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 2018;31:e00057-17. doi: 10.1128/CMR.00057-17. PubMed DOI PMC
Azami S.J., Amani A., Keshavarz H., Najafi-Taher R., Mohebali M., Faramarzi M.A., Mahmoudi M., Shojaee S. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur. J. Pharm. Sci. 2018;117:138–146. doi: 10.1016/j.ejps.2018.02.018. PubMed DOI
Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Berlin, Germany: 2018.
da Silva Cardoso V., Vermelho A.B., Ricci Junior E., Almeida Rodrigues I., Mazotto A.M., Supuran C.T. Antileishmanial activity of sulphonamide nanoemulsions targeting the β-carbonic anhydrase from Leishmania species. J. Enzym. Inhib. Med. Chem. 2018;33:850–857. doi: 10.1080/14756366.2018.1463221. PubMed DOI PMC
Dhorm Pimentel de Moraes A.R., Tavares G.D., Soares Rocha F.J., de Paula E., Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp. Parasitol. 2018;187:12–21. doi: 10.1016/j.exppara.2018.03.005. PubMed DOI
de Oliveira de Siqueira L.B., da Silva Cardoso V., Rodrigues I.A., Vazquez-Villa A.L., dos Santos E.P., da Costa Leal Ribeiro Guimarães B., Dos Santos Cerqueira Coutinho C., Vermelho A.B., Junior E.R. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology. 2017;28:65101. PubMed
Shokri A., Saeedi M., Fakhar M., Morteza-Semnani K., Keighobadi M., Teshnizi S.H., Kelidari H.R., Sadjadi S. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER) Iran. J. Parasitol. 2017;12:622. PubMed PMC
Bouyahya A., Et-Touys A., Bakri Y., Talbaui A., Fellah H., Abrini J., Dakka N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017;111:41–49. doi: 10.1016/j.micpath.2017.08.015. PubMed DOI
Baldissera M.D., Da Silva A.S., Oliveira C.B., Zimmermann C.E.P., Vaucher R.A., Santos R.C.V., Rech V.C., Tonin A.A., Giongo J.L., Mattos C.B. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: In vitro tests. Exp. Parasitol. 2013;134:356–361. doi: 10.1016/j.exppara.2013.03.035. PubMed DOI
World Malaria Report 2018. World Health Organization; Geneva, Switzerland: 2018.
Dwivedi P., Khatik R., Chaturvedi P., Khandelwal K., Taneja I., Raju K.S.R., Dwivedi H., kumar Singh S., Gupta P.K., Shukla P. Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: An approach by enhanced bioavailability. Colloids Surf. B Biointerfaces. 2015;126:467–475. doi: 10.1016/j.colsurfb.2014.12.052. PubMed DOI
Torgerson P.R. Economic effects of echinococcosis. Acta Trop. 2003;85:113–118. doi: 10.1016/S0001-706X(02)00228-0. PubMed DOI
Budke C.M., Deplazes P., Torgerson P.R. Global socioeconomic impact of cystic echinococcosis. Emerg. Infect. Dis. 2006;12:296. doi: 10.3201/eid1202.050499. PubMed DOI PMC
Moazeni M., Borji H., Darbandi M.S., Saharkhiz M.J. In vitro and in vivo antihydatid activity of a nano emulsion of Zataria multiflora essential oil. Res. Vet. Sci. 2017;114:308–312. doi: 10.1016/j.rvsc.2017.06.003. PubMed DOI
Mahmoudvand H., Mirbadie S.R., Sadooghian S., Harandi M.F., Jahanbakhsh S., Saedi Dezaki E. Chemical composition and scolicidal activity of Zataria multiflora Boiss essential oil. J. Essent. Oil Res. 2017;29:42–47. doi: 10.1080/10412905.2016.1201546. DOI
Lymbery A.J. Advances in Parasitology. Volume 95. Elsevier; Amsterdam, The Netherlands: 2017. Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus; pp. 111–145. PubMed
Monteiro D.U., Azevedo M.I., Weiblen C., Botton S.D.A., Funk N.L., Da Silva C.D.B., Zanette R.A., Schwanz T.G., De La Rue M.L. In vitro and ex vivo activity of Melaleuca alternifolia against protoscoleces of Echinococcus ortleppi. Parasitology. 2017;144:214–219. doi: 10.1017/S0031182016001621. PubMed DOI
Ntalli N.G., Caboni P. Botanical nematicides in the mediterranean basin. Phytochem. Rev. 2012;11:351–359. doi: 10.1007/s11101-012-9254-4. DOI
Ntalli N., Caboni P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem. Rev. 2017;16:827–834. doi: 10.1007/s11101-017-9491-7. DOI
Ntalli N.G., Caboni P. Botanical nematicides: A review. J. Agric. Food Chem. 2012;60:9929–9940. doi: 10.1021/jf303107j. PubMed DOI
Caboni P., Ntalli N.G. Biopesticides: State of the Art and Future Opportunities. ACS Publications; Washington, WA, USA: 2014. Botanical nematicides, recent findings; pp. 145–157.
Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 2011;67:341–351. doi: 10.1002/ps.2070. PubMed DOI
Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agric. Food Chem. 2010;58:7856–7863. doi: 10.1021/jf100797m. PubMed DOI
Kim C.T., Kim C.J., Cho Y.J., Choi S.W., Choi A.J. Nanoemulsion and Nanoparticle Containing Plant Essential Oil and Method of Production Thereof. US20100136207A1. U.S. Patent. 2010 Jun 3;
Magdassi S., Dayan B., Levi-Ruso G. Pesticide Nanoparticles Obtained from Microemulsions and Nanoemulsions. US9095133B2. U.S. Patent. 2015 Aug 4;
Enan E., Porpiglia P.J., Lindner G.J. Methods for Pest Control Employing Microemulsion-Based Enhanced Pest Control Formulations. US20120251641A1. U.S. Patent. 2012 Oct 4;
ECHA REACH Guidance for Nanomaterials Published. [(accessed on 2 August 2019)]; Available online: https://echa.europa.eu/it/-/reach-guidance-for-nanomaterials-published.
Villaverde J.J., Sevilla-morán B., López-goti C., Alonso-prados J.L., Sandín-españa P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci. Total Environ. 2018;634:1530–1539. doi: 10.1016/j.scitotenv.2018.04.033. PubMed DOI
Puzyn T., Leszczynski J., Leszczynska D., Leszczynski J. Toward the Development of Nano-QSARs: Advances and Challenges. Small. 2009;5:2494–2509. doi: 10.1002/smll.200900179. PubMed DOI
Gajewicz A., Rasulev B., Dinadayalane T.C., Urbaszek P., Puzyn T., Leszczynska D., Leszczynski J. Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Adv. Drug Deliv. Rev. 2012;64:1663–1693. doi: 10.1016/j.addr.2012.05.014. PubMed DOI
Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H.M., Toropov A., Leszczynska D., Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011;6:175. doi: 10.1038/nnano.2011.10. PubMed DOI
Durdagi S., Mavromoustakos T., Papadopoulos M.G. 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. Bioorg. Med. Chem. Lett. 2008;18:6283–6289. doi: 10.1016/j.bmcl.2008.09.107. PubMed DOI
Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana