Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests

. 2019 Sep 09 ; 9 (9) : . [epub] 20190909

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31505756

The management of parasites, insect pests and vectors requests development of novel, effective and eco-friendly tools. The development of resistance towards many drugs and pesticides pushed scientists to look for novel bioactive compounds endowed with multiple modes of action, and with no risk to human health and environment. Several natural products are used as alternative/complementary approaches to manage parasites, insect pests and vectors due to their high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps overcome some hurdles related to their physicochemical properties, for instance limited stability and handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising eco-friendly tools in pest and vector management, pending proper field validation. Future research on the improvement of technical aspects as well as chronic toxicity experiments on non-target species is needed.

Zobrazit více v PubMed

Anton N., Vandamme T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011;28:978–985. doi: 10.1007/s11095-010-0309-1. PubMed DOI

Tadros T., Izquierdo P., Esquena J., Solans C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004;108:303–318. doi: 10.1016/j.cis.2003.10.023. PubMed DOI

Talegaonkar S., Azeem A., Ahmad F., Khar R., Pathan S., Khan Z. Microemulsions: A Novel Approach to Enhanced Drug Delivery. Recent Pat. Drug Deliv. 2008;2:238–257. doi: 10.2174/187221108786241679. PubMed DOI

Gasco M.R. Microemulsions in the pharmaceutical field: Perspectives and applications. Surfactant Sci. Ser. 1997;66:97–122.

McClements D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012;8:1719–1729. doi: 10.1039/C2SM06903B. DOI

Rao J., McClements D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011;59:5026–5035. doi: 10.1021/jf200094m. PubMed DOI

Danielsson I., Lindman B. The definition of microemulsion. Colloids Surf. 1981;3:391–392. doi: 10.1016/0166-6622(81)80064-9. DOI

Hoar T.P., Schulman J.H. Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle. Nature. 1943;152:102–103. doi: 10.1038/152102a0. DOI

Bera A., Mandal A. Microemulsions: A novel approach to enhanced oil recovery: A review. J. Pet. Explor. Prod. Technol. 2015;5:255–268. doi: 10.1007/s13202-014-0139-5. DOI

Pavoni L., Benelli G., Maggi F., Bonacucina G. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. Green nanoemulsion interventions for biopesticide formulations; pp. 133–160.

Venhuis S.H., Mehrvar M. Health effects, environmental impacts, and photochemical degradation of selected surfactants in water. Int. J. Photoenergy. 2004;6:115–125. doi: 10.1155/S1110662X04000157. DOI

Wilhelm K.P., Cua A.B., Wolff H.H., Maibach H.I. Surfactant-induced stratum corneum hydration in vivo: Prediction of the irritation potential of anionic surfactants. J. Investig. Dermatol. 1993;101:310–315. doi: 10.1111/1523-1747.ep12365467. PubMed DOI

Lawrence M.J., Rees G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012;64:175–193. doi: 10.1016/j.addr.2012.09.018. PubMed DOI

Schulman J.H., Stoeckenius W., Prince L.M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. J. Phys. Chem. 1959;63:1677–1680. doi: 10.1021/j150580a027. DOI

Alany R.G., Rades T., Agatonovic-Kustrin S., Davies N.M., Tucker I.G. Effects of alcohols and diols on the phase behaviour of quaternary systems. Int. J. Pharm. 2000;196:141–145. doi: 10.1016/S0378-5173(99)00408-1. PubMed DOI

Lam A.C., Schechter R.S. The theory of diffusion in microemulsion. J. Colloid Interface Sci. 1987;120:56–63. doi: 10.1016/0021-9797(87)90322-5. DOI

Salvia-Trujillo L., Rojas-Graü M.A., Soliva-Fortuny R., Martín-Belloso O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013;30:401–407. doi: 10.1016/j.foodhyd.2012.07.004. DOI

Chang Y., McClements D.J. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: Influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem. 2014;62:2306–2312. doi: 10.1021/jf500160y. PubMed DOI

Tadros T. In: Ostwald Ripening BT Encyclopedia of Colloid and Interface Science. Tadros T., editor. Springer; Berlin/Heidelberg, Germany: 2013. p. 820.

Chang Y., McLandsborough L., McClements D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. J. Agric. Food Chem. 2012;60:12056–12063. doi: 10.1021/jf304045a. PubMed DOI

Donsì F., Annunziata M., Vincensi M., Ferrari G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol. 2012;159:342–350. doi: 10.1016/j.jbiotec.2011.07.001. PubMed DOI

Terjung N., Löffler M., Gibis M., Hinrichs J., Weiss J. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct. 2012;3:290–301. doi: 10.1039/C2FO10198J. PubMed DOI

Shah D., Micelles D.O. Microemulsions and Monolayers: Science and Technology. CRC Press; New York, NY, USA: 1998.

Holmberg K. Organic and bioorganic reactions in microemulsions. Adv. Colloid Interface Sci. 1994;51:137–174. doi: 10.1016/0001-8686(94)80035-9. DOI

Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003;8:137–144. doi: 10.1016/S1359-0294(03)00019-0. DOI

Yu H., Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 2012;60:5373–5379. doi: 10.1021/jf300609p. PubMed DOI

Saifullah M., Ahsan A., Shishir M.R.I. Production, Stability and Application of Micro and Nanoemulsion in Food Production and the food Processing Industry. Emulsions. 2016;3:405–442. doi: 10.1016/B978-0-12-804306-6.00012-X. DOI

Chee C.P., Gallaher J.J., Djordjevic D., Faraji H., McClements D.J., Decker E.A., Hollender R., Peterson D.G., Roberts R.F., Coupland J.N. Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. J. Dairy Res. 2005;72:311–316. doi: 10.1017/S0022029905001068. PubMed DOI

Silva H.D., Cerqueira M.Â., Vicente A.A. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol. 2012;5:854–867. doi: 10.1007/s11947-011-0683-7. DOI

Donsi F., Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016;233:106–120. doi: 10.1016/j.jbiotec.2016.07.005. PubMed DOI

Alexandre E.M.C., Lourenço R.V., Bittante A.M.Q.B., Moraes I.C.F., do Amaral Sobral P.J. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life. 2016;10:87–96. doi: 10.1016/j.fpsl.2016.10.004. DOI

Flanagan J., Singh H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 2006;46:221–237. doi: 10.1080/10408690590956710. PubMed DOI

Kralova I., Sjöblom J. Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 2009;30:1363–1383. doi: 10.1080/01932690902735561. DOI

Araya H., Tomita M., Hayashi M. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int. J. Pharm. 2005;305:61–74. doi: 10.1016/j.ijpharm.2005.08.022. PubMed DOI

Bonacucina G., Cespi M., Misici-falzi M., Palmieri G.F. Colloidal Soft Matter as Drug Delivery System. J. Pharm. Sci. 2009;98:1–42. doi: 10.1002/jps.21423. PubMed DOI

Paul B.K., Moulik S.P. Uses and applications of microemulsions. Curr. Sci. Assoc. 2001;80:990–1001.

Kim C.K., Cho Y.J., Gao Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release. 2001;70:149–155. doi: 10.1016/S0168-3659(00)00343-6. PubMed DOI

Yin Y.M., Cui F.D., Mu C.F., Choi M.K., Kim J.S., Chung S.J., Shim C.K., Kim D.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J. Control. Release. 2009;140:86–94. doi: 10.1016/j.jconrel.2009.08.015. PubMed DOI

Von Corswant C., Thorén P., Engström S. Triglyceride-based microemulsion for intravenous administration of sparingly soluble substances. J. Pharm. Sci. 1998;87:200–208. doi: 10.1021/js970258w. PubMed DOI

Đorđević S.M., Santrač A., Cekić N.D., Marković B.D., Divović B., Ilić T.M., Savić M.M., Savić S.D. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. Int. J. Pharm. 2017;533:421–430. doi: 10.1016/j.ijpharm.2017.05.051. PubMed DOI

Gupta S., Moulik S.P. Biocompatible microemulsions and their prospective uses in drug delivery. J. Pharm. Sci. 2008;97:22–45. doi: 10.1002/jps.21177. PubMed DOI

Majeed A., Bashir R., Farooq S., Maqbool M. Preparation, Characterization and Applications of Nanoemulsions: An Insight. J. Drug Deliv. 2019;9:520–527. doi: 10.22270/jddt.v9i2.2410. DOI

Vyas T.K., Babbar A.K., Sharma R.K., Singh S., Misra A. Intranasal Mucoadhesive Microemulsions of Clonazepam: Preliminary Studies on Brain Targeting. J. Pharm. Sci. 2006;95:570–580. doi: 10.1002/jps.20480. PubMed DOI

Shiokawa T., Hattori Y., Kawano K., Ohguchi Y., Kawakami H., Toma K., Maitani Y. Effect of polyethylene glycol linker chain length of folate-linked microemulsions loading aclacinomycln A on targeting ability and antitumor effect in vitro and in vivo. Clin. Cancer Res. 2005;11:2018–2025. doi: 10.1158/1078-0432.CCR-04-1129. PubMed DOI

Medina-Pérez G., Fernández-Luqueño F., Campos-Montiel R.G., Sánchez-López K.B., Afanador-Barajas L.N., Prince L. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. Nanotechnology in crop protection: Status and future trends; pp. 17–45.

Khater H., Govindarajan M., Benelli G. Natural Remedies in the Fight Against Parasites. InTech, BoD–Books on Demand; London, UK: 2017.

Du Z., Wang C., Tai X., Wang G., Liu X. Optimization and Characterization of Biocompatible Oil-in-Water Nanoemulsion for Pesticide Delivery. ACS Sustain. Chem. Eng. 2016;4:983–991. doi: 10.1021/acssuschemeng.5b01058. DOI

Perlatti B., de Souza Bergo P.L., Fernandes J.B., Forim M.R. Insecticides-Development of Safer and More Effective Technologies. IntechOpen; London, UK: 2013. Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals.

Song S., Liu X., Jiang J., Qian Y., Zhang N., Wu Q. Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf. A Physicochem. Eng. Asp. 2009;350:57–62. doi: 10.1016/j.colsurfa.2009.08.034. DOI

Lubbe A., Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011;34:785–801. doi: 10.1016/j.indcrop.2011.01.019. DOI

Fahn A. Structure and function of secretory cells. Adv. Bot. Res. 2000;31:37–75.

Isman M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006;51:45–66. doi: 10.1146/annurev.ento.51.110104.151146. PubMed DOI

Chen M., Chang C.H., Tao L., Lu C. Residential exposure to pesticide during childhood and childhood cancers: A meta-analysis. Pediatrics. 2015;136:719–729. doi: 10.1542/peds.2015-0006. PubMed DOI

Goulson D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013;50:977–987. doi: 10.1111/1365-2664.12111. DOI

McCaffery A., Nauen R. The insecticide resistance action committee (IRAC): Public responsibility and enlightened industrial self-interest. Outlooks Pest Manag. 2006;17:11–14.

Thakore Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2006;2:194–208. doi: 10.1089/ind.2006.2.194. DOI

Isman M.B. A renaissance for botanical insecticides? Pest Manag. Sci. 2015;71:1587–1590. doi: 10.1002/ps.4088. PubMed DOI

Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016;52:229–241.

Isman M.B. Problems and opportunities for the commercialization of botanical insecticides. In: Regnault-Roger C., Philogene B.J.R., Vincent C., editors. Biopesticides of Plant Origin. Lavoisier; Paris, France: 2005. pp. 283–291.

Collins D.A. A review of alternatives to organophosphorus compounds for the control of storage mites. J. Stored Prod. Res. 2006;42:395–426. doi: 10.1016/j.jspr.2005.08.001. DOI

Singh A., Srivastava V.K. Toxic effect of synthetic pyrethroid permethrin on the enzyme system of the freshwater fish Channa striatus. Chemosphere. 1999;39:1951–1956. doi: 10.1016/S0045-6535(99)00078-8. PubMed DOI

Guleria S., Jammu T. Integrated Pest Management: Innovation-Development Process. Springer; Dordrecht, The Netherlands: Heidelberg, Germany: 2009.

Benelli G., Canale A., Toniolo C., Higuchi A., Murugan K., Pavela R., Nicoletti M. Neem (Azadirachta indica): Towards the ideal insecticide? Nat. Prod. Res. 2017;31:369–386. doi: 10.1080/14786419.2016.1214834. PubMed DOI

Raizada R.B., Srivastava M.K., Kaushal R.A., Singh R.P. Azadirachtin, a neem biopesticide: Subchronic toxicity assessment in rats. Food Chem. Toxicol. 2001;39:477–483. doi: 10.1016/S0278-6915(00)00153-8. PubMed DOI

Mehlhorn H., Al-Rasheid K.A.S., Abdel-Ghaffar F. Nature Helps. Springer; Heidelberg, Germany: 2011. The Neem tree story: Extracts that really work; pp. 77–108.

Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI

Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI

Stroh J., Wan M.T., Isman M.B., Moul D.J. Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull. Environ. Contam. Toxicol. 1998;60:923–930. doi: 10.1007/s001289900716. PubMed DOI

Pavela R., Benelli G., Pavoni L., Bonacucina G., Cespi M., Cianfaglione K., Bajalan I., Morshedloo M.R., Lupidi G., Romano D., et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019;129:631–640. doi: 10.1016/j.indcrop.2018.11.073. DOI

Dubey N.K. Natural Products in Plant Pest Management. CABI; Wallingford, UK: 2011.

Isman M.B. Botanical Insecticides, Deterrents, Repellents and Oils. CABI; Oxfordsh, UK: 2010. pp. 433–445.

Koul O., Walia S., Dhaliwal G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008;4:63–84.

Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI

Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015;76:174–187. doi: 10.1016/j.indcrop.2015.06.050. DOI

Rattan R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29:913–920. doi: 10.1016/j.cropro.2010.05.008. DOI

Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI

Tian J., Ban X., Zeng H., He J., Chen Y., Wang Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE. 2012;7:e30147. doi: 10.1371/journal.pone.0030147. PubMed DOI PMC

Ceylan E., Fung D.Y.C. Antimicrobial activity of spices 1. J. Rapid Methods Autom. Microbiol. 2004;12:1–55. doi: 10.1111/j.1745-4581.2004.tb00046.x. DOI

Di Pasqua R., Hoskins N., Betts G., Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006;54:2745–2749. doi: 10.1021/jf052722l. PubMed DOI

Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharm. 2001;130:325–337. doi: 10.1016/S1532-0456(01)00255-1. PubMed DOI

Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules. 2018;23:34. doi: 10.3390/molecules23010034. PubMed DOI PMC

Mills C., Cleary B.V., Walsh J.J., Gilmer J.F. Inhibition of acetylcholinesterase by tea tree oil. J. Pharm. Pharm. 2004;56:375–379. doi: 10.1211/0022357022773. PubMed DOI

Priestley C.M., Williamson E.M., Wafford K.A., Sattelle D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo–oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharm. 2003;140:1363–1372. doi: 10.1038/sj.bjp.0705542. PubMed DOI PMC

Enan E.E. Molecular response of Drosophila Melanogaster Tyramine Receptor Cascade to Plant Essential Oils. Insect Biochem. Mol. Biol. 2005;35:309–321. doi: 10.1016/j.ibmb.2004.12.007. PubMed DOI

Isman M.B. Plant essential oils for pest and disease management. Crop Prot. 2000;19:603–608. doi: 10.1016/S0261-2194(00)00079-X. DOI

Benelli G., Pavela R., Canale A., Cianfaglione K., Ciaschetti G., Conti F., Nicoletti M., Senthil-Nathan S., Mehlhorn H., Maggi F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017;66:166–171. doi: 10.1016/j.parint.2017.01.012. PubMed DOI

Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI

Turek C., Stintzing F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI

Isman M.B., Miresmailli S., Machial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011;10:197–204. doi: 10.1007/s11101-010-9170-4. DOI

Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res. 2016;115:23–34. doi: 10.1007/s00436-015-4800-9. PubMed DOI

Haldar K.M., Haldar B., Chandra G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol. Res. 2013;112:1451–1459. doi: 10.1007/s00436-013-3288-4. PubMed DOI

Benelli G. Gold nanoparticles–against parasites and insect vectors. Acta Trop. 2018;178:73–80. doi: 10.1016/j.actatropica.2017.10.021. PubMed DOI

Arjunan N.K., Murugan K., Rejeeth C., Madhiyazhagan P., Barnard D.R. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis. 2012;12:262–268. doi: 10.1089/vbz.2011.0661. PubMed DOI

Ghormade V., Deshpande M.V., Paknikar K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011;29:792–803. doi: 10.1016/j.biotechadv.2011.06.007. PubMed DOI

Pavela R., Murugan K., Canale A., Benelli G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017;97:338–344. doi: 10.1016/j.indcrop.2016.12.046. DOI

Cespi M., Quassinti L., Perinelli D.R., Bramucci M., Iannarelli R., Papa F., Ricciutelli M., Bonacucina G., Palmieri G.F., Maggi F. Microemulsions enhance the shelf-life and processability of Smyrnium olusatrum L. essential oil. Flavour Fragr. J. 2017;32:159–164. doi: 10.1002/ffj.3367. DOI

Pavela R., Pavoni L., Bonacucina G., Cespi M., Kavallieratos N.G., Cappellacci L., Petrelli R., Maggi F., Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019;92:909–921. doi: 10.1007/s10340-018-01076-3. DOI

Osman Mohamed Ali E., Shakil N.A., Rana V.S., Sarkar D.J., Majumder S., Kaushik P., Singh B.B., Kumar J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod. 2017;108:379–387. doi: 10.1016/j.indcrop.2017.06.061. DOI

Pavoni L., Maggi F., Mancianti F., Nardoni S., Ebani V.V., Cespi M., Bonacucina G., Palmieri G.F. Microemulsions: An effective encapsulation tool to enhance the antimicrobial activity of selected EOs. J. Drug Deliv. Sci. Technol. 2019 doi: 10.1016/j.jddst.2019.05.050. DOI

Liang R., Xu S., Shoemaker C.F., Li Y., Zhong F., Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem. 2012;60:7548–7555. doi: 10.1021/jf301129k. PubMed DOI

Sasson Y., Levy-Ruso G., Toledano O., Ishaaya I. Insecticides Design Using Advanced Technologies. Springer; Berlin, Germany: 2007. Nanosuspensions: Emerging novel agrochemical formulations; pp. 1–39.

Salvia-Trujillo L., Rojas-Graü A., Soliva-Fortuny R., Martín-Belloso O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015;43:547–556. doi: 10.1016/j.foodhyd.2014.07.012. DOI

Zhao N.N., Zhang H., Zhang X.C., Luan X.B., Zhou C., Liu Q.Z., Shi W.P., Liu Z.L. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae) J. Econ. Entomol. 2013;106:1349–1354. doi: 10.1603/EC12191. PubMed DOI

Mann R.S., Tiwari S., Smoot J.M., Rouseff R.L., Stelinski L.L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae) J. Appl. Entomol. 2012;136:87–96. doi: 10.1111/j.1439-0418.2010.01592.x. DOI

González W.J.O., Gutiérrez M.M., Murray A.P., Ferrero A.A. Composition and biological activity of essential oils from Labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Manag. Sci. 2011;67:948–955. doi: 10.1002/ps.2138. PubMed DOI

Tian B.L., Liu Q.Z., Liu Z.L., Li P., Wang J.W. Insecticidal Potential of Clove Essential Oil and Its Constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in Laboratory and Field. J. Econ. Entomol. 2015;108:957–961. doi: 10.1093/jee/tov075. PubMed DOI

Fernandes C.P., de Almeida F.B., Silveira A.N., Gonzalez M.S., Mello C.B., Feder D., Apolinário R., Santos M.G., Carvalho J.C.T., Tietbohl L.A.C., et al. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J. Nanobiotechnol. 2014;12:1–9. doi: 10.1186/1477-3155-12-22. PubMed DOI PMC

Fernandes C.P., Xavier A., Pacheco J.P.F., Santos M.G., Mexas R., Ratcliffe N.A., Gonzalez M.S., Mello C.B., Rocha L., Feder D. Laboratory evaluation of the effects of Manilkara subsericea (Mart.) Dubard extracts and triterpenes on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest Manag. Sci. 2013;69:292–301. doi: 10.1002/ps.3388. PubMed DOI

Stanisçuaski F., Ferreira-DaSilva C.T., Mulinari F., Pires-Alves M., Carlini C.R. Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) Toxicon. 2005;45:753–760. doi: 10.1016/j.toxicon.2005.01.014. PubMed DOI

Gutiérrez C., Fereres A., Reina M., Cabrera R., González-Coloma A. Behavioral and Sublethal Effects of Structurally Related Lower Terpenes on Myzus persicae. J. Chem. Ecol. 1997;23:1641–1650. doi: 10.1023/B:JOEC.0000006428.00568.c5. DOI

Santana O., Cabrera R., Gimenez C., González-Coloma A., Sánchez-Vioque R., De los Mozos-Pascual M., Rodríguez-Conde M.F., Laserna-Ruiz I., Usano-Alemany J., Herraiz D. Perfil químico y biológico de aceites esenciales de plantas aromáticas de interés agro-industrial en Castilla-La Mancha (España) Grasas Y Aceites. 2012;63

Blackman R.L., Eastop V.F. Aphids on the World’s Crops: An Identification and Information Guide. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2000.

Kalaitzaki A., Papanikolaou N.E., Karamaouna F., Dourtoglou V., Xenakis A., Papadimitriou V. Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: A structural and efficacy study. Langmuir. 2015;31:5722–5730. doi: 10.1021/acs.langmuir.5b00246. PubMed DOI

Pascual-Villalobos M.J., Cantó-Tejero M., Vallejo R., Guirao P., Rodríguez-Rojo S., Cocero M.J. Use of nanoemulsions of plant essential oils as aphid repellents. Ind. Crops Prod. 2017;110:45–57. doi: 10.1016/j.indcrop.2017.05.019. DOI

Blackman R.L., Eastop V.F. Taxonomic issues. Aphids Crop Pests. 2007:1–29.

James A.A. Mosquito molecular genetics: The hands that feed bite back. Science. 1992;257:37–39. doi: 10.1126/science.1352413. PubMed DOI

Jambulingam P., Subramanian S., de Vlas S.J., Vinubala C., Stolk W.A. Mathematical modelling of lymphatic filariasis elimination programmes in India: Required duration of mass drug administration and post-treatment level of infection indicators. Parasit. Vectors. 2016;9:501. doi: 10.1186/s13071-016-1768-y. PubMed DOI PMC

Benelli G., Romano D. Mosquito vectors of Zika virus. Entomol. Gen. 2017;36:309–318. doi: 10.1127/entomologia/2017/0496. DOI

Oliveira A.E.M.F.M., Duarte J.L., Cruz R.A.S., Souto R.N.P., Ferreira R.M.A., Peniche T., Conceição E.C., Oliveira L.A.R., Faustino S.M.M., Florentino A.C., et al. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnol. 2017;15:1–11. doi: 10.1186/s12951-016-0234-5. PubMed DOI PMC

Duarte J.L., Amado J.R.R., Oliveira A.E.M.F.M., Cruz R.A.S., Ferreira A.M., Souto R.N.P., Falcão D.Q., Carvalho J.C.T., Fernandesa C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Braz. J. Pharm. 2015;25:189–192. doi: 10.1016/j.bjp.2015.02.010. DOI

Ghosh V., Mukherjee A., Chandrasekaran N. Formulation and characterization of plant essential oil based nanoemulsion: Evaluation of its larvicidal activity against Aedes aegypti. Asian J. Chem. 2013;25:S321.

Balasubramani S., Rajendhiran T., Moola A.K., Kumari R., Diana B. Development of nanoemulsion from Vitex negundo Lessential oil and their efficacy of antioxidant antimicrobial and larvicidal activities (Aedes aegypti L.) ) Environ. Sci. Pollut. Res. 2017;24:15125–15133. doi: 10.1007/s11356-017-9118-y. PubMed DOI

Gaysinsky S., Taylor T.M., Davidson P.M., Bruce B.D. Antimicrobial Efficacy of Eugenol Microemulsions in Milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 2007;70:2631–2637. doi: 10.4315/0362-028X-70.11.2631. PubMed DOI

Anjali C., Sharma Y., Mukherjee A., Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 2012;68:158–163. doi: 10.1002/ps.2233. PubMed DOI

Sugumar S., Clarke S.K., Nirmala M.J., Tyagi B.K., Mukherjee A., Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014;104:393–402. doi: 10.1017/S0007485313000710. PubMed DOI

Dwivedy A.K., Singh V.K., Prakash B., Dubey N.K. Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food Chem. Toxicol. 2018;111:102–113. doi: 10.1016/j.fct.2017.11.007. PubMed DOI

Alonso-Amelot M.E., Avila-Núñez J.L. Comparison of seven methods for stored cereal losses to insects for their application in rural conditions. J. Stored Prod. Res. 2011;47:82–87. doi: 10.1016/j.jspr.2011.01.001. DOI

Magan N., Hope R., Cairns V., Aldred D. Epidemiology of Mycotoxin Producing Fungi. Springer; Berlin, Germany: 2003. Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain; pp. 723–730.

Hodges R.J., Robinson R., Hall D.R. Quinone contamination of dehusked rice by Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) J. Stored Prod. Res. 1996;32:31–37. doi: 10.1016/0022-474X(95)00036-7. DOI

Nenaah G.E. Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst) Ind. Crops Prod. 2014;53:252–260. doi: 10.1016/j.indcrop.2013.12.042. DOI

Hashem A.S., Awadalla S.S., Zayed G.M., Maggi F., Benelli G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—Insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018;25:18802–18812. doi: 10.1007/s11356-018-2068-1. PubMed DOI

Pant M., Dubey S., Patanjali P.K., Naik S.N., Sharma S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegrad. 2014;91:119–127. doi: 10.1016/j.ibiod.2013.11.019. DOI

Kesari V., Das A., Rangan L. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop. Biomass Bioenergy. 2010;34:108–115. doi: 10.1016/j.biombioe.2009.10.006. DOI

Sharma S., Verma M., Prasad R., Yadav D. Efficacy of non-edible oil seedcakes against termite (Odontotermes obesus) J. Sci. Ind. Res. 2011;70:1037–1041.

Mossa A.T.H., Abdelfattah N.A.H., Mohafrash S.M.M. Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granarius. Asian J. Crop Sci. 2017;9:50–62. doi: 10.3923/ajcs.2017.50.62. DOI

Choupanian M., Omar D., Basri M., Asib N. Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. J. Pestic. Sci. 2017;42:158–165. doi: 10.1584/jpestics.D17-032. PubMed DOI PMC

van der Goes van Naters W., Carlson J.R. Insects as chemosensors of humans and crops. Nature. 2006;444:302. doi: 10.1038/nature05403. PubMed DOI

Drapeau J., Verdier M., Touraud D., Kröckel U., Geier M., Rose A., Kunz W. Effective insect repellent formulation in both surfactantless and classical microemulsions with a long-lasting protection for human beings. Chem. Biodivers. 2009;6:934–947. doi: 10.1002/cbdv.200800225. PubMed DOI

Tavares M., da Silva M.R.M., de Oliveira de Siqueira L.B., Rodrigues R.A.S., Bodjolle-d’Almeira L., dos Santos E.P., Ricci-Júnior E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018;539:190–209. doi: 10.1016/j.ijpharm.2018.01.046. PubMed DOI

Pinto I.C., Cerqueira-Coutinho C.S., Santos E.P., Carmo F.A., Ricci-Junior E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev. Ind. Pharm. 2017;43:67–73. doi: 10.1080/03639045.2016.1220564. PubMed DOI

Rowland M., Freeman T., Downey G., Hadi A., Saeed M. DEET mosquito repellent sold through social marketing provides personal protection against malaria in an area of all–night mosquito biting and partial coverage of insecticide–treated nets: A case–control study of effectiveness. Trop. Med. Int. Heal. 2004;9:343–350. doi: 10.1046/j.1365-3156.2003.01183.x. PubMed DOI

Abou-Donia M.B. Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: Implications of Gulf War chemical exposures. J. Toxicol. Environ. Heal. Part A. 1996;48:35–56. doi: 10.1080/009841096161456. PubMed DOI

Qiu H., McCall J.W., Jun H.W. Formulation of topical insect repellent N, N-diethyl-m-toluamide (DEET): Vehicle effects on DEET in vitro skin permeation. Int. J. Pharm. 1998;163:167–176. doi: 10.1016/S0378-5173(97)00379-7. DOI

Moore S.J., Lenglet A., Hill N. Insect Repellents: Principles Methods, and Use. CRC Press; Boca Raton, FL, USA: 2006. Plant-based insect repellents.

Seyoum A., Pålsson K., Kung’a S., Kabiru E.W., Lwande W., Killeen G.F., Hassanali A., Knots B.G.J. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: Ethnobotanical studies and application by thermal expulsion and direct burning. Trans. R. Soc. Trop. Med. Hyg. 2002;96:225–231. doi: 10.1016/S0035-9203(02)90084-2. PubMed DOI

Rehman J.U., Ali A., Khan I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia. 2014;95:65–74. doi: 10.1016/j.fitote.2014.03.002. PubMed DOI

Jaenson T.G.T., Pålsson K., Borg-Karlson A.K. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006;43:113–119. doi: 10.1093/jmedent/43.1.113. PubMed DOI

Sukumar K., Perich M.J., Boobar L.R. Botanical derivatives in mosquito control: A review. J. Am. Mosq. Control Assoc. 1991;7:210–237. PubMed

Jantan I., Zaki Z.M. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. Asean Rev. Biodivers. Environ. Conserv. 1998;6:1–7.

Yang Y.C., Lee E.H., Lee H.S., Lee D.K., Ahn Y.J. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J. Am. Mosq. Control Assoc. 2004;20:146–149. PubMed

Nuchuchua O., Sakulku U., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. In Vitro Characterization and Mosquito (Aedes aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech. 2009;10:1234–1242. doi: 10.1208/s12249-009-9323-1. PubMed DOI PMC

Sakulku U., Nuchuchua O., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009;372:105–111. doi: 10.1016/j.ijpharm.2008.12.029. PubMed DOI

Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006;123–126:369–385. doi: 10.1016/j.cis.2006.05.014. PubMed DOI

Steib B.M. The Effect of Lactic Acid on Odour-Related Host Preference of Yellow Fever Mosquitoes. Chem. Senses. 2001;26:523–528. doi: 10.1093/chemse/26.5.523. PubMed DOI

Bernier U.R., Kline D.L., Posey K.H., Booth M.M., Yost R.A., Barnard D.R. Synergistic Attraction of Aedes aegypti (L.) to Binary Blends of L-Lactic Acid and Acetone, Dichloromethane, or Dimethyl Disulfide. J. Med. Entomol. 2009;40:653–656. doi: 10.1603/0022-2585-40.5.653. PubMed DOI

Navayan A., Moghimipour E., Khodayar M.J., Vazirianzadeh B., Siahpoosh A., Valizadeh M., Mansourzadeh Z. Evaluation of the Mosquito Repellent Activity of Nano-sized Microemulsion of Eucalyptus globulus Essential Oil Against Culicinae. Jundishapur J. Nat. Pharm. Prod. 2017;12 doi: 10.5812/jjnpp.55626. DOI

Miresmailli S., Isman M.B. Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J. Econ. Entomol. 2006;99:2015–2023. doi: 10.1093/jee/99.6.2015. PubMed DOI

Çalmaşur Ö., Aslan İ., Şahin F. Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 2006;23:140–146. doi: 10.1016/j.indcrop.2005.05.003. DOI

Laborda R., Manzano I., Gamón M., Gavidia I., Pérez-Bermúdez P., Boluda R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae) Ind. Crops Prod. 2013;48:106–110. doi: 10.1016/j.indcrop.2013.04.011. DOI

Han J., Kim S., Choi B., Lee S., Ahn Y. Fumigant toxicity of lemon eucalyptus oil constituents to acaricide–Susceptible and acaricide–Resistant Tetranychus urticae. Pest Manag. Sci. 2011;67:1583–1588. doi: 10.1002/ps.2216. PubMed DOI

Choi W.I., Lee S.G., Park H.M., Ahn Y.J. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) J. Econ. Entomol. 2004;97:553–558. doi: 10.1603/0022-0493-97.2.553. PubMed DOI

Xu J., Fan Q.J., Yin Z.Q., Li X.T., Du Y.H., Jia R.Y., Wang K.Y., Lv C., Ye G., Geng Y., et al. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet. Parasitol. 2010;169:399–403. doi: 10.1016/j.vetpar.2010.01.016. PubMed DOI

Chaisri W., Chaiyana W., Pikulkaew S., Okonogi S., Suriyasathaporn W. Enhancement of acaricide activity of citronella oil after microemulsion preparation. Jpn. J. Vet. Res. 2019;67:15–23. doi: 10.14943/jjvr.67.1.15. DOI

Pedrini N., Ortiz-Urquiza A., Zhang S., Keyhani N. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria Bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 2013;4:24. doi: 10.3389/fmicb.2013.00024. PubMed DOI PMC

dos Santos D.S., Boito J.P., Santos R.C.V., Quatrin P.M., Ourique A.F., dos Reis J.H., Gebert R.R., Glombowsky P., Klauck V., Boligon A.A., et al. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Exp. Appl. Acarol. 2017;73:129–138. doi: 10.1007/s10493-017-0171-5. PubMed DOI

Federal U., Maria D.S., Maria S., Maria S., Federal U., Maria D.S., Catarina S. Archivos de Zootecnia. Agric. Biol. Sci. Anim. Sci. Zool. 2018;67:494–498.

Volpato A., Grosskopf R.K., Santos R.C., Vaucher R.A., Raffin R.P., Boligon A.A., Athayde M.L., Stefani L.M., Da Silva A.S. Influence of rosemary, andiroba and copaiba essential oils on different stages of the biological cycle of the tick Rhipicephalus microplus in vitro. J. Essent. Oil Res. 2015;27:244–250. doi: 10.1080/10412905.2015.1010045. DOI

Mossa A.T.H., Afia S.I., Mohafrash S.M.M., Abou-Awad B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae) Environ. Sci. Pollut. Res. 2018;25:10526–10537. doi: 10.1007/s11356-017-0752-1. PubMed DOI

Badawy M.E.I., Abdelgaleil S.A.M., Mahmoud N.F., Marei A.E.S.M. Preparation and characterizations of essential oil and monoterpene nanoemulsions and acaricidal activity against two-spotted spider mite (Tetranychus urticae Koch) Int. J. Acarol. 2018;44:330–340. doi: 10.1080/01647954.2018.1523225. DOI

Echeverría J., de Albuquerque D.G., Diego R. Nanoemulsions of essential oils: New tool for control of vector–borne diseases and in vitro effects on some parasitic agents. Medicines. 2019;6:42. doi: 10.3390/medicines6020042. PubMed DOI PMC

Montoya J.G., Liesenfeld O. Toxoplasmosis. Lancet. 2004;363:1965–1976. doi: 10.1016/S0140-6736(04)16412-X. PubMed DOI

Pinto B., Mattei R., Moscato G.A., Cristofano M., Giraldi M., Scarpato R., Buffolano W., Bruschi F. Toxoplasma infection in individuals in central Italy: Does a gender-linked risk exist? Eur. J. Clin. Microbiol. Infect. Dis. 2017;36:739–746. doi: 10.1007/s10096-016-2857-8. PubMed DOI

Dunay I.R., Gajurel K., Dhakal R., Liesenfeld O., Montoya J.G. Treatment of toxoplasmosis: Historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 2018;31:e00057-17. doi: 10.1128/CMR.00057-17. PubMed DOI PMC

Azami S.J., Amani A., Keshavarz H., Najafi-Taher R., Mohebali M., Faramarzi M.A., Mahmoudi M., Shojaee S. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur. J. Pharm. Sci. 2018;117:138–146. doi: 10.1016/j.ejps.2018.02.018. PubMed DOI

Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Berlin, Germany: 2018.

da Silva Cardoso V., Vermelho A.B., Ricci Junior E., Almeida Rodrigues I., Mazotto A.M., Supuran C.T. Antileishmanial activity of sulphonamide nanoemulsions targeting the β-carbonic anhydrase from Leishmania species. J. Enzym. Inhib. Med. Chem. 2018;33:850–857. doi: 10.1080/14756366.2018.1463221. PubMed DOI PMC

Dhorm Pimentel de Moraes A.R., Tavares G.D., Soares Rocha F.J., de Paula E., Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp. Parasitol. 2018;187:12–21. doi: 10.1016/j.exppara.2018.03.005. PubMed DOI

de Oliveira de Siqueira L.B., da Silva Cardoso V., Rodrigues I.A., Vazquez-Villa A.L., dos Santos E.P., da Costa Leal Ribeiro Guimarães B., Dos Santos Cerqueira Coutinho C., Vermelho A.B., Junior E.R. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology. 2017;28:65101. PubMed

Shokri A., Saeedi M., Fakhar M., Morteza-Semnani K., Keighobadi M., Teshnizi S.H., Kelidari H.R., Sadjadi S. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER) Iran. J. Parasitol. 2017;12:622. PubMed PMC

Bouyahya A., Et-Touys A., Bakri Y., Talbaui A., Fellah H., Abrini J., Dakka N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017;111:41–49. doi: 10.1016/j.micpath.2017.08.015. PubMed DOI

Baldissera M.D., Da Silva A.S., Oliveira C.B., Zimmermann C.E.P., Vaucher R.A., Santos R.C.V., Rech V.C., Tonin A.A., Giongo J.L., Mattos C.B. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: In vitro tests. Exp. Parasitol. 2013;134:356–361. doi: 10.1016/j.exppara.2013.03.035. PubMed DOI

World Malaria Report 2018. World Health Organization; Geneva, Switzerland: 2018.

Dwivedi P., Khatik R., Chaturvedi P., Khandelwal K., Taneja I., Raju K.S.R., Dwivedi H., kumar Singh S., Gupta P.K., Shukla P. Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: An approach by enhanced bioavailability. Colloids Surf. B Biointerfaces. 2015;126:467–475. doi: 10.1016/j.colsurfb.2014.12.052. PubMed DOI

Torgerson P.R. Economic effects of echinococcosis. Acta Trop. 2003;85:113–118. doi: 10.1016/S0001-706X(02)00228-0. PubMed DOI

Budke C.M., Deplazes P., Torgerson P.R. Global socioeconomic impact of cystic echinococcosis. Emerg. Infect. Dis. 2006;12:296. doi: 10.3201/eid1202.050499. PubMed DOI PMC

Moazeni M., Borji H., Darbandi M.S., Saharkhiz M.J. In vitro and in vivo antihydatid activity of a nano emulsion of Zataria multiflora essential oil. Res. Vet. Sci. 2017;114:308–312. doi: 10.1016/j.rvsc.2017.06.003. PubMed DOI

Mahmoudvand H., Mirbadie S.R., Sadooghian S., Harandi M.F., Jahanbakhsh S., Saedi Dezaki E. Chemical composition and scolicidal activity of Zataria multiflora Boiss essential oil. J. Essent. Oil Res. 2017;29:42–47. doi: 10.1080/10412905.2016.1201546. DOI

Lymbery A.J. Advances in Parasitology. Volume 95. Elsevier; Amsterdam, The Netherlands: 2017. Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus; pp. 111–145. PubMed

Monteiro D.U., Azevedo M.I., Weiblen C., Botton S.D.A., Funk N.L., Da Silva C.D.B., Zanette R.A., Schwanz T.G., De La Rue M.L. In vitro and ex vivo activity of Melaleuca alternifolia against protoscoleces of Echinococcus ortleppi. Parasitology. 2017;144:214–219. doi: 10.1017/S0031182016001621. PubMed DOI

Ntalli N.G., Caboni P. Botanical nematicides in the mediterranean basin. Phytochem. Rev. 2012;11:351–359. doi: 10.1007/s11101-012-9254-4. DOI

Ntalli N., Caboni P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem. Rev. 2017;16:827–834. doi: 10.1007/s11101-017-9491-7. DOI

Ntalli N.G., Caboni P. Botanical nematicides: A review. J. Agric. Food Chem. 2012;60:9929–9940. doi: 10.1021/jf303107j. PubMed DOI

Caboni P., Ntalli N.G. Biopesticides: State of the Art and Future Opportunities. ACS Publications; Washington, WA, USA: 2014. Botanical nematicides, recent findings; pp. 145–157.

Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 2011;67:341–351. doi: 10.1002/ps.2070. PubMed DOI

Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agric. Food Chem. 2010;58:7856–7863. doi: 10.1021/jf100797m. PubMed DOI

Kim C.T., Kim C.J., Cho Y.J., Choi S.W., Choi A.J. Nanoemulsion and Nanoparticle Containing Plant Essential Oil and Method of Production Thereof. US20100136207A1. U.S. Patent. 2010 Jun 3;

Magdassi S., Dayan B., Levi-Ruso G. Pesticide Nanoparticles Obtained from Microemulsions and Nanoemulsions. US9095133B2. U.S. Patent. 2015 Aug 4;

Enan E., Porpiglia P.J., Lindner G.J. Methods for Pest Control Employing Microemulsion-Based Enhanced Pest Control Formulations. US20120251641A1. U.S. Patent. 2012 Oct 4;

ECHA REACH Guidance for Nanomaterials Published. [(accessed on 2 August 2019)]; Available online: https://echa.europa.eu/it/-/reach-guidance-for-nanomaterials-published.

Villaverde J.J., Sevilla-morán B., López-goti C., Alonso-prados J.L., Sandín-españa P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci. Total Environ. 2018;634:1530–1539. doi: 10.1016/j.scitotenv.2018.04.033. PubMed DOI

Puzyn T., Leszczynski J., Leszczynska D., Leszczynski J. Toward the Development of Nano-QSARs: Advances and Challenges. Small. 2009;5:2494–2509. doi: 10.1002/smll.200900179. PubMed DOI

Gajewicz A., Rasulev B., Dinadayalane T.C., Urbaszek P., Puzyn T., Leszczynska D., Leszczynski J. Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Adv. Drug Deliv. Rev. 2012;64:1663–1693. doi: 10.1016/j.addr.2012.05.014. PubMed DOI

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H.M., Toropov A., Leszczynska D., Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011;6:175. doi: 10.1038/nnano.2011.10. PubMed DOI

Durdagi S., Mavromoustakos T., Papadopoulos M.G. 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. Bioorg. Med. Chem. Lett. 2008;18:6283–6289. doi: 10.1016/j.bmcl.2008.09.107. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...