Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview

. 2022 Aug 20 ; 8 (8) : . [epub] 20220820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36005123

Grantová podpora
VZ-RO0418 Ministry of Agriculture
QK21010064 Ministry of Agriculture

Insecticides and rodenticides form the basis of integrated pest management systems worldwide. As pest resistance continues to increase and entire groups of chemical active ingredients are restricted or banned, manufacturers are looking for new options for more effective formulations and safer application methods for the remaining pesticide ingredients. In addition to new technological adaptations of mainstream formulations in the form of sprays, fumigants, and dusts, the use of gel formulations is becoming increasingly explored and employed. This article summarizes information on the current and potential use of gel (including hydrogel) and paste formulations against harmful arthropods or rodents in specific branches of pest management in the agricultural, food, stored product, structural wood, urban, medical, and public health areas. Due to the worldwide high interest in natural substances, part of the review was devoted to the use of gels for the formulation of pesticide substances of botanical origin, such as essential or edible oils. Gels as emerging formulation of so called "smart insecticides" based on molecular iRNA disruptors are discussed.

Zobrazit více v PubMed

Prathap A., Sureshan K.M. Sugar-based organogelators for various applications. Langmuir. 2019;35:6005–6014. doi: 10.1021/acs.langmuir.9b00506. PubMed DOI

Mondal S., Das S., Nandi A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter. 2020;16:1404–1454. doi: 10.1039/C9SM02127B. PubMed DOI

Cao X., Gao A., Hou J.-T., Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord. Chem. Rev. 2021;434:213792. doi: 10.1016/j.ccr.2021.213792. DOI

Tay J.W., Choe D.H., Mulchandani A., Rust M.K. Hydrogels: From controlled release to a new bait delivery for insect pest management. J. Econ. Entomol. 2020;113:2061–2068. doi: 10.1093/jee/toaa183. PubMed DOI PMC

Işıklan N. Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads. J. Appl. Polym. Sci. 2007;105:718–725. doi: 10.1002/app.26078. DOI

Baloch F.E., Afzali D., Fathirad F. Design of acrylic acid/nanoclay grafted polysaccharide hydrogels as superabsorbent for controlled release of chlorpyrifos. Appl. Clay Sci. 2021;211:106194. doi: 10.1016/j.clay.2021.106194. DOI

Nuruzzaman M., Rahman M.M., Liu Y.J., Naidu R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016;64:1447–1483. doi: 10.1021/acs.jafc.5b05214. PubMed DOI

Sun C., Zeng Z., Cui H., Verheggen F. Polymer-based nanoinsecticides: Current developments, environmental risks and future challenges. A review. Biotechnol. Agron. Soc. Environ. 2020;24:59–69. doi: 10.25518/1780-4507.18497. DOI

Athanassiou C.G., Kavallieratos N.G., Benelli G., Losic D., Usha Rani P., Desneux N. Nanoparticles for pest control: Current status and future perspectives. J. Pest. Sci. 2018;91:1–15. doi: 10.1007/s10340-017-0898-0. DOI

Stejskal V., Vendl T., Aulicky R., Athanassiou C. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Insects. 2021;12:590. doi: 10.3390/insects12070590. PubMed DOI PMC

Campolo O., Giunti G., Russo A., Palmeri V., Zappalà L. Essential oils in stored product insect pest control. J. Food Qual. 2018;2018:6906105. doi: 10.1155/2018/6906105. DOI

Nansen C., Hinson B., Davidson D., Vaughn K., Hosseini A. Novel approaches to application and performance assessment of insecticide applications to crop leaves. J. Econ. Entomol. 2009;103:219–227. doi: 10.1603/EC09346. PubMed DOI

Meredith A.N., Harper B., Harper S.L. The influence of size on the toxicity of an encapsulated pesticide: A comparison of micron-and nano-sized capsules. Environ. Int. 2016;86:68–74. doi: 10.1016/j.envint.2015.10.012. PubMed DOI

Greaves J.H., Rowe F.P., Redfern R., Ayres P. Microencapsulation of rodenticides. Nature. 1968;219:402–403. doi: 10.1038/219402a0. PubMed DOI

Hohenberger J., Friesen A., Wieck S., Kümmerer K. In search of the Holy Grail of Rodent control: Step-by-step implementation of safe and sustainable-by-design principles on the example of rodenticides. Sustain. Chem. Pharm. 2022;25:100602. doi: 10.1016/j.scp.2022.100602. DOI

Rumbos C.I., Dutton A.C., Athanassiou C.G. Efficacy of two formulations of pirimiphos-methyl as surface treatment against Sitophilus granarius, Rhyzopertha dominica, and Tribolium confusum. J. Pest Sci. 2014;87:507–519. doi: 10.1007/s10340-014-0599-x. DOI

Marsh R.E. Microencapsulation of rodenticides. Proc. Vertebr. Pest Conf. 1990;14:62–64.

Stejskal V., Aulicky R., Pekar S. Brief exposure of Blattella germanica (Blattodea) to insecticides formulated in various microcapsule sizes and applied on porous and non-porous surfaces. Pest Manag. Sci. 2009;65:93–98. doi: 10.1002/ps.1651. PubMed DOI

Ali S., Akram W., Sajjad A., Shakeel Q., Ullah M.I. Aerogels as Pesticides. In: Inamudin, Mobin R., Ahamed M.I., Altalhi T., editors. Aerogels II: Preparation, Properties and Applications. Materials Research Forum LLC; Millersville, PA, USA: 2021. pp. 168–182.

Benelli G., Pavela R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018;117:382–392. doi: 10.1016/j.indcrop.2018.02.072. DOI

Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI

Cornwell P.B. Studies in microencapsulation of rodenticides. Proc. Vertebr. Pest Conf. 1970;4:83–97.

Guilherme M.R., Aouada F.A., Fajardo A.R., Martins A.F., Paulino A.T., Davi M.F.T., Rubira A.F., Muniz E.C. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015;72:365–385. doi: 10.1016/j.eurpolymj.2015.04.017. DOI

Mishra S., Thombare N., Ali M., Swami S. Applications of Biopolymeric gels in Agricultural Sector. In: Thakur V.K., Thakur M.K., Voicu S.I., editors. Polymer Gels: Perspectives and Applications. Springer; Singapore: 2018. pp. 185–228.

Singh A., Dhiman N., Kar A.K., Singh D., Purohit M.P., Ghosh D., Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. J. Hazard. Mater. 2020;385:121525. doi: 10.1016/j.jhazmat.2019.121525. PubMed DOI

Campea M.A., Majcher M.J., Lofts A., Hoare T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv. Funct. Mater. 2021;31:2102355. doi: 10.1002/adfm.202102355. DOI

Qu B., Luo Y.C. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. Int. J. Biol. Macromol. 2020;152:437–448. doi: 10.1016/j.ijbiomac.2020.02.240. PubMed DOI

Księżak J. The influence of different doses of hydrogel on the quality of seeds and the yield of faba beans. Pol. J. Agron. 2018;33:8–15.

Sarvas M., Pavlenda P., Takacova E. Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J. For. Sci. 2007;53:204–209. doi: 10.17221/2178-JFS. DOI

Hayat R., Ali S. Water absorption by synthetic polymer (Aquasorb) and its effect on soil properties and tomato yield. Int. J. Agric. Biol. 2004;6:998–1200.

Letey J., Clark P.R., Amrhein C. Water-sorbing polymers do not conserve water. Calif. Agric. 1992;46:9–10. doi: 10.3733/ca.v046n03p9. DOI

Fonteno W.C., Bilderback T.E. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Am. Soc. Hortic. Sci. 1993;118:217–222. doi: 10.21273/JASHS.118.2.217. DOI

Michalik R., Wandzik I. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers. 2020;12:2425. doi: 10.3390/polym12102425. PubMed DOI PMC

Rudzinski W.E., Dave A.M., Vaishnav U.H., Kumbar S.G., Kulkarni A.R., Aminabhavi T.M. Hydrogels as controlled release devices in agriculture. Des. Monom. Polym. 2002;5:39–65. doi: 10.1163/156855502760151580. DOI

Rudzinski W.E., Chipuk T., Dave A.M., Kumbar S.G., Aminabhavi T.M. PH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J. Appl. Polym. Sci. 2003;87:394–403. doi: 10.1002/app.11382. DOI

Aouada F.A., de Moura M.R., Mattoso L.H.C. Biodegradable Hydrogel as Delivery Vehicle for the Controlled Release of Pesticide. In: Stoytcheva M., editor. Pesticides-Formulations, Effects, Fate. InTech; London, UK: 2011.

Bhagat D., Samanta S.K., Bhattacharyya S. Efficient management of fruit pests by pheromone nanogels. Sci. Rep. 2013;3:1294. doi: 10.1038/srep01294. PubMed DOI PMC

He F., Zhou Q., Wang L., Yu G., Li J., Feng Y. Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Appl. Clay Sci. 2019;183:105347. doi: 10.1016/j.clay.2019.105347. DOI

Xiang Y., Zhang G., Chen C., Liu B., Cai D., Wu Z. Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 2018;6:1192–1201. doi: 10.1021/acssuschemeng.7b03469. DOI

Singh B., Sharma D.K., Gupta A. Controlled Release of thiram fungicide from starch-based hydrogels. J. Environ. Sci. Health B. 2007;42:677–695. doi: 10.1080/03601230701465825. PubMed DOI

Singh B., Sharma D., Gupta A. In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels. J. Hazard. Mater. 2008;154:278–286. doi: 10.1016/j.jhazmat.2007.10.024. PubMed DOI

Xu C., Cao L., Bilal M., Cao C., Zhao P., Zhang H., Huang Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydr. Polym. 2021;262:117933. doi: 10.1016/j.carbpol.2021.117933. PubMed DOI

Supare K., Mahanwar P. Starch-chitosan hydrogels for the controlled-release of herbicide in agricultural applications: A study on the effect of the concentration of raw materials and crosslinkers. J. Polym. Environ. 2022;30:2448–2461. doi: 10.1007/s10924-022-02379-4. DOI

Rehab A., Akelah A., Issa R., D’Antone S., Solaro R., Chiellini E. Controlled release of herbicides supported on polysaccharide based hydrogels. J. Bioact. Compat. Polym. 1991;6:52–63. doi: 10.1177/088391159100600105. DOI

Li J., Li Y., Dong H. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J. Agric. Food Chem. 2008;56:1336–1342. doi: 10.1021/jf072530l. PubMed DOI

Gharbi K., Tay J.W. Fumigant toxicity of essential oils against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as affected by polymer release and adjuvants. Insects. 2022;13:493. doi: 10.3390/insects13060493. PubMed DOI PMC

Ropek D., Kulikowski E. Potential of hydrogel application for plant protection. Ecol. Chem. Eng. A. 2009;16:1191–1198.

Galhardi J.A., de Oliveira J.L., Ghoshal S., Fraceto L.F. Soil enzyme responses to polymeric nanopesticides: An ecological risk analysis approach to promote sustainable agriculture. ACS Agric. Sci. Technol. 2022;3:443–452. doi: 10.1021/acsagscitech.1c00234. DOI

Song Y., Zhu F., Cao C., Cao L., Li F., Zhao P., Huang Q. Reducing pesticide spraying drift by folate/Zn2+ supramolecular hydrogels. Pest Manag. Sci. 2021;77:5278–5285. doi: 10.1002/ps.6570. PubMed DOI

Yang Y., Zhang S., Yang J., Bai C., Tang S., Ye Q., Wang H. Superabsorbent hydrogels coating increased degradation and decreased bound residues formation of carbendazim in soil. Sci. Total Environ. 2018;630:1133–1142. doi: 10.1016/j.scitotenv.2018.02.178. PubMed DOI

Aouada F.A., Pan Z., Orts W.J., Mattoso L.H. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J. Appl. Polym. Sci. 2009;114:2139–2148. doi: 10.1002/app.30339. DOI

Alammar A., Park S.-H., Ibrahim I., Arun D., Holtzl T., Dumée L.F., Lim H.N., Szekely G. Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Appl. Mater. Today. 2020;21:100878. doi: 10.1016/j.apmt.2020.100878. DOI

Gosset A., Oestreicher V., Perullini M., Bilmes S.A., Jobbágy M., Dulhoste S., Bayard R., Durrieu C. Optimization of sensors based on encapsulated algae for pesticide detection in water. Anal. Methods. 2019;11:6193–6203. doi: 10.1039/C9AY02145K. DOI

Jia W., Fan R., Zhang J., Zhu K., Gai S., Yin Y., Yang Y. Smart MOF-on-MOF hydrogel as a simple rod-shaped core for visual detection and effective removal of pesticides. Small. 2022;18:2201510. doi: 10.1002/smll.202201510. PubMed DOI

Aulicky R., Tkadlec E., Suchomel J., Frankova M., Heroldová M., Stejskal V. Management of the common vole in the Czech lands: Historical and current perspectives. Agronomy. 2022;12:1629. doi: 10.3390/agronomy12071629. DOI

Buckle A.P., Smith R. Rodent Pests and Their Control. CABI; Wallingford, UK: 2014.

Frankova M., Kaftanova B., Aulicky R., Rodl P., Frynta D., Stejskal V. Temporal production of coloured faeces in wild roof rats (Rattus rattus) following consumption of fluorescent non-toxic bait and a comparison with wild R. norvegicus and Mus musculus. J. Stored Prod. Res. 2019;81:7–10. doi: 10.1016/j.jspr.2018.12.002. DOI

Frankova M., Stejskal V., Aulicky R. Suppression of food intake by house mouse (Mus musculus) following ingestion of brodifacoum-based rodenticide bait. Crop. Prot. 2017;100:134–137. doi: 10.1016/j.cropro.2017.06.017. DOI

Frankova M., Stejskal V., Aulicky R. Efficacy of rodenticide baits with decreased concentrations of brodifacoum: Validation of the impact of the new EU anticoagulant regulation. Sci. Rep. 2019;9:16779. doi: 10.1038/s41598-019-53299-8. PubMed DOI PMC

Grulich I. Boj proti hrabosi polnímu. In: Kratochvíl J., Balát F., editors. Common Vole (Microtus arvalis) 1st ed. CAV Edition; Prague, Czech Republic: 1959. pp. 285–316. (In Czech)

Wilson G. The Evolution of Rodenticides. Professional Pest Manager. 2018. [(accessed on 8 July 2022)]. Available online: https://professionalpestmanager.com/the-evolution-of-rodenticides/

Vuksa M., Djedovic S., Jokic G., Stojnic B. Palatability and efficacy of RB soft bag formulated baits in controlling house mouse and Norway rat in mills and storage facilities of agricultural products. J. Process. Energy Agric. 2011;15:267–269.

Vukša M., Dedovic S., Jokic G., Stojnic B. Palatability and efficacy of RB soft bag formulated baits in controlling house mouse and Norway rat in animal food blender facilities and pig farm. Biotechnol. Anim. Husb. 2011;27:1801–1810. doi: 10.2298/BAH1104801V. DOI

Jordan K.K., Riegel C., Bauder F.M., Smith P.L. Urban Field Efficacy of a New Cholecalciferol-based Soft Bait on Commensal Rats in New Orleans, Louisiana, USA. In: Woods D.M., editor. Proceedings of the 28th Vertebrate Pest Conference; Rohnert Park, CA, USA. 26 February–1 March 2018; Davis, CA, USA: Independently published; 2018. pp. 23–32.

Sked S., Abbar S., Cooper R., Corrigan R., Pan X., Ranabhat S., Wang C. Monitoring and controlling house mouse, Mus musculus domesticus, Infestations in low-income multi-family dwellings. Animals. 2021;11:648. doi: 10.3390/ani11030648. PubMed DOI PMC

Kappes P.J., Siers S.R. Relative acceptance of brodifacoum pellets and soft bait sachets by Polynesian rats (Rattus exulans) on Wake Atoll. Manag. Biol. Invasions. 2021;12:685–699. doi: 10.3391/mbi.2021.12.3.11. DOI

Sachdeva S., Singla N. Antifeedant and repellent potential of alginate based microcapsules containing eucalyptus oil against house rat, Rattus rattus. J. Entomol. Zool. Stud. 2018;6:608–617.

Frynta D., Eliasova B., Frankova M., Aulicky R., Rodl P., Stejskal V. Production of UV-light-detectable faeces from house mice (Mus musculus domesticus) after consumption of encapsulted fluorescent pigment in monitoring bait. Pest Manag. Sci. 2012;68:355–361. doi: 10.1002/ps.2269. PubMed DOI

Frankova M., Kaftanova-Eliasova B., Rodl P., Aulicky R., Frynta D., Stejskal V. Monitoring of Rattus norvegicus based on non-toxic bait containing encapsulated fluorescent dye: Laboratory and semi-field validation study. J. Stored Prod. Res. 2015;64:103–108. doi: 10.1016/j.jspr.2015.10.002. DOI

Wales K.N., Meinerz R., Baldwin R.A. Assessing the Attractiveness of Three Baits for Roof Rats in California Citrus Orchards. Agronomy. 2021;11:2417. doi: 10.3390/agronomy11122417. DOI

World Health Organization . World Malaria Report 2016. World Health Organization; Geneva, Switzerland: 2016.

Tavares M., da Silva M.R.M., de Oliveira de Siqueira L.B., Rodrigues R.A.S., Bodjolle-d’Almeira L., dos Santos E.P., Ricci-Júnior E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018;539:190–209. doi: 10.1016/j.ijpharm.2018.01.046. PubMed DOI

Peterson C., Coats J. Insect repellents—Past, present and future. Pestic. Outlook. 2001;12:154–158. doi: 10.1039/b106296b. DOI

Hazarika H., Krishnatreyya H., Tyagi V., Islam J., Gogoi N., Goyary D., Chattopadhyay P., Zaman K. The fabrication and assessment of mosquito repellent cream for outdoor protection. Sci. Rep. 2022;12:2180. doi: 10.1038/s41598-022-06185-9. PubMed DOI PMC

Barradas T.N., Senna J.P., Junior E.R., Mansur C.R.E. Polymer-based drug delivery systems applied to insects repellents devices: A review. Curr. Drug Deliv. 2016;13:221–235. doi: 10.2174/1567201813666151207110515. PubMed DOI

Milutinović R., Vuleta G., Milić J., Stajković N. Assessment of efficiency of repellent formulations with N, N-diethyl-m-toluamide in laboratory conditions. Int. J. Cosmet. Sci. 1999;21:7–14. doi: 10.1046/j.1467-2494.1999.181696.x. PubMed DOI

Pinto I.C., Cerqueira-Coutinho C.S., Santos E.P., Carmo F.A., Ricci-Junior E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev. Ind. Pharm. 2017;43:67–73. doi: 10.1080/03639045.2016.1220564. PubMed DOI

Delong W., Weibin M., Mingchen J., Zhonglin Y., Juntao F., Xing Z. pHEMA hydrogels with pendant triazinyl-β-cyclodextrin as an efficient and recyclable reservoir for loading and release of plant-based mosquito repellents: A new aqueous mosquito repellent formulation. RSC Adv. 2016;6:27301–27312. doi: 10.1039/C5RA27942A. DOI

Kumar N., Kumar S., Singh S.P., Rao R. Enhanced protective potential of novel citronella essential oil microsponge hydrogel against Anopheles stephensi mosquito. J. Asia Pac. Entomol. 2021;24:61–69. doi: 10.1016/j.aspen.2020.11.005. DOI

Rogerio C.B., Abrantes D.C., De Oliveira J.L., de Araújo D.R., da Costa T.G., De Lima R., Fraceto L.F. Cellulose hydrogels containing geraniol and icaridin encapsulated in zein nanoparticles for arbovirus control. ACS Appl. Bio Mater. 2022;5:1273–1283. doi: 10.1021/acsabm.1c01286. PubMed DOI

Benelli G., Canale A., Conti B. Eco-friendly control strategies against the asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): Repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline. 2014;1:44–51.

Spinozzi E., Maggi F., Bonacucina G., Pavela R., Boukouvala M.C., Kavallieratos N.G., Canale A., Romano D., Desneux N., Wilke A.B.B., et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes—A review. Ind. Crops Prod. 2021;171:113892. doi: 10.1016/j.indcrop.2021.113892. DOI

Pavoni L., Pavela R., Cespi M., Bonacucina G., Maggi F., Zeni V., Canale A., Lucchi A., Bruschi F., Benelli G. Green micro- and nanoemulsions for managing parasites, vectors and pests. Nanomaterials. 2019;9:1285. doi: 10.3390/nano9091285. PubMed DOI PMC

Mapossa A.B., Focke W.W., Tewo R.K., Androsch R., Kruger T. Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malar. J. 2021;20:165. doi: 10.1186/s12936-021-03681-7. PubMed DOI PMC

Shin J., Seo S.M., Park I.K., Hyun J. Larvicidal composite alginate hydrogel combined with a pickering emulsion of essential oil. Carbohydr. Polym. 2021;254:117381. doi: 10.1016/j.carbpol.2020.117381. PubMed DOI

Johnson B.J., Ritchie S.A., Fonseca D.M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects. 2017;8:5. doi: 10.3390/insects8010005. PubMed DOI PMC

Friuli M., Cafarchia C., Lia R.P., Otranto D., Pombi M., Demitri C. From tissue engineering to mosquitoes: Biopolymers as tools for developing a novel biomimetic approach to pest management/vector control. Parasites Vectors. 2022;15:79. doi: 10.1186/s13071-022-05193-y. PubMed DOI PMC

Friuli M., Cafarchia C., Cataldo A., Lia R.P., Otranto D., Pombi M., Demitri C. Proof of concept of biopolymer based hydrogels as biomimetic oviposition substrate to develop tiger mosquitoes (Aedes albopictus) cost-effective lure and kill ovitraps. Bioengineering. 2022;9:267. doi: 10.3390/bioengineering9070267. PubMed DOI PMC

Rust M.K., Owens J.M., Reierson D.A. Understanding and Controlling the German Cockroach. Oxford University Press; New York, NY, USA: 1995.

Tee H., Lee C. Sustainable cockroach management using insecticidal baits: Formulations, behavioral responses and issues. In: Dhang P., editor. Urban Insect Pests-Sustainable Management Strategies. CAB International; Oxfordshire, UK: Boston, MA, USA: 2014. pp. 65–85.

Stejskal V., Vendl T., Li Z., Aulicky R. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): A review. Insects. 2019;10:149. doi: 10.3390/insects10050149. PubMed DOI PMC

Appel A.G. Laboratory and field performance of an indoxacarb bait against German cockroaches (Dictyoptera: Blattellidae) J. Econ. Entomol. 2003;96:863–870. doi: 10.1093/jee/96.3.863. PubMed DOI

Lovell J.B. Amidinohydrazones—A new class of insecticides; Proceedings of the 10th British Crop Protection Conference-Pests and Diseases; Brighton, UK. 19–22 November 1979; Cambridge, UK: British Crop Protection Council; 1979. pp. 575–582.

Oladipupo S.O., Hu X.P., Appel A.G. Essential oils in urban insect management—A review. J. Econ. Entomol. 2022:toac083. doi: 10.1093/jee/toac083. PubMed DOI

Huang J.H., Liu Y., Lin Y.H., Belles X., Lee H.J. Practical use of RNA interference: Oral delivery of double-stranded RNA in liposome carriers for cockroaches. J. Vis. Exp. 2018;135:e57385. doi: 10.3791/57385. PubMed DOI PMC

Wang S., Miao S., Yang B., Wang Z., Liu Q., Wang R., Du X., Ren Y., Lu Y. Initial characterization of the vitellogenin receptor from a Psocoptera insect: Function analysis and RNA interference in Liposcelis entomophila (Enderlein) J. Stored Prod. Res. 2021;92:101803. doi: 10.1016/j.jspr.2021.101803. DOI

Markin G.P., OHill S. Microencapsulated oil bait for control of the imported fire ant. J. Econ. Entomol. 1971;64:193–196. doi: 10.1093/jee/64.1.193. DOI

Oladipupo S.O., Hu X.P., Appel A.G. Essential oil components in superabsorbent polymer gel modify reproduction of Blattella germanica (Blattodea: Ectobiidae) J. Econ. Entomol. 2020;113:2436–2447. doi: 10.1093/jee/toaa139. PubMed DOI

Buczkowski G., Roper E., Chin D. Polyacrylamide hydrogels: An effective tool for delivering liquid baits to pest ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2014;107:748–757. doi: 10.1603/EC13508. PubMed DOI

Tay J.W., Hoddle M.S., Mulchandani A., Choe D.H. Development of an alginate hydrogel to deliver aqueous bait for pest ant management. Pest Manag. Sci. 2017;73:2028–2038. doi: 10.1002/ps.4616. PubMed DOI

Rust M.K., Soeprono A., Wright S., Greenberg L., Choe D.-H., Boser C.L., Cory C., Hanna C. Laboratory and field evaluations of polyacrylamide hydrogel baits against Argentine ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2015;108:1228–1236. doi: 10.1093/jee/tov044. PubMed DOI

Choe D.H., Campbell K., Hoddle M.S., Kabashima J., Dimson M., Rust M.K. Evaluation of a hydrogel matrix for baiting western yellowjacket (Vespidae: Hymenoptera) J. Econ. Entomol. 2018;111:1799–1805. doi: 10.1093/jee/toy139. PubMed DOI

Boser C.L., Hanna C., Holway D.A., Faulkner K.R., Naughton I., Merrill K., Randall J.M., Cory C., Choe D.H., Morrison S.A. Protocols for argentine ant eradication in conservation areas. J. Appl. Entomol. 2017;141:540–550. doi: 10.1111/jen.12372. DOI

Merrill K.C., Boser C.L., Hanna C., Holway D.A., Naughton I., Choe D.-H., Rankin E.E.W. Argentine ant (Linepithema humile, Mayr) eradication efforts on San Clemente Island, California, USA. West. N. Am. Nat. 2019;78:829. doi: 10.3398/064.078.0422. DOI

Klotz J.H., Shorey H. Low-Toxic Control of Argentine Ants Using Pheromone-Enhanced Liquid Baits. California Department of Consumer Affairs; Sacramento, CA, USA: 2000. p. 35.

Hewlett P.S. The formation of insecticidal films on building materials. Ann. Appl. Biol. 1948;35:228–232. doi: 10.1111/j.1744-7348.1948.tb07363.x. PubMed DOI

Parkin E., Hewlett S. The formation of insecticidal films on building materials. I. Preliminary experiments with films of pyrethrum and D.D.T. in a heavy oil. Ann. Appl. Biol. 1946;33:381. doi: 10.1111/j.1744-7348.1946.tb06327.x. PubMed DOI

Hewlett P.S. The toxicities of three petroleum oils to the grain weevils. Ann. Appl. Biol. 1947;34:575–585. doi: 10.1111/j.1744-7348.1947.tb06390.x. PubMed DOI

Tyler P.S., Rowlands D.G. Sodium carboxymethyl cellulose as a stabilizer for malathion formulations. J. Stored Prod. Res. 1967;3:109–115. doi: 10.1016/0022-474X(67)90020-3. DOI

Gudrups I., Harris A.H., Dales M.J. Are residual insecticide applications to store surfaces worth using?. In: Highley E., Wright E.J., Banks H.J., Champ B.R., editors. Proceedings of the 6th International Working Conference on Stored-Product Protection; Canberra, Australia. 17–23 April 1994; Wallingford, UK: CAB International; 1994. pp. 785–789.

Obounou-Akong F., Gérardin P., Thévenon M.F., Gérardin-Charbonnier C. Hydrogel-based boron salt formulations for wood preservation. Wood Sci. Technol. 2015;49:443–456. doi: 10.1007/s00226-015-0701-4. DOI

Krizkova-Kudlikova I., Stejskal V., Hubert J. Comparison of detection methods for Acarus siro (Acari: Acaridida: Acarididae) contamination in grain. J. Econ. Entomol. 2007;100:1928–1937. doi: 10.1603/0022-0493(2007)100[1928:CODMFA]2.0.CO;2. PubMed DOI

Hubert J., Stejskal V., Athanassiou C.G., Throne J.E. Health hazards associated with arthropod infestation of stored products. Annu. Rev. Entomol. 2018;63:553–573. doi: 10.1146/annurev-ento-020117-043218. PubMed DOI

Hubert J., Erban T., Nesvorna M., Stejskal V. Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Addit. Contam. Part A. 2011;28:1129–1135. doi: 10.1080/19440049.2011.584911. PubMed DOI

Stejskal V., Bostlova M., Nesvorna M., Volek V., Dolezal V., Hubert J. Comparison of the resistance of mono-and multilayer packaging films to stored-product insects in a laboratory test. Food Control. 2017;73:566–573. doi: 10.1016/j.foodcont.2016.09.001. DOI

Aulicky R., Vendl T., Stejskal V. Evaluation of contamination of packages containing cereal-fruit bars by eggs of the pest Indian meal moth (Plodia interpunctella, Lepidoptera) due to perforations in their polypropylene foil packaging. J. Food Sci. Technol. 2019;56:3293–3299. doi: 10.1007/s13197-019-03799-2. PubMed DOI PMC

Vendl T., Stejskal V., Kadlec J., Aulicky R. New approach for evaluating the repellent activity of essential oils against storage pests using a miniaturized model of stored-commodity packaging and a wooden transport pallet. Ind. Crops Prod. 2021;172:114024. doi: 10.1016/j.indcrop.2021.114024. DOI

Riudavets J., Castane C., Alomar O., Pons M.J., Gabarra R. Modified atmosphere packaging (MAP) as an alternative measure for controlling ten pests that attack processed food products. J. Stored Prod. Res. 2009;45:91–96. doi: 10.1016/j.jspr.2008.10.001. DOI

Kucerova Z., Kyhos K., Aulicky R., Stejskal V. Low pressure treatment to control food-infesting pests (Tribolium castaneum, Sitophilus granarius) using a vacuum packing machine. Czech J. Food Sci. 2013;31:94–98. doi: 10.17221/154/2012-CJFS. DOI

Kucerova Z., Kyhos K., Aulicky R., Lukas J., Stejskal V. Laboratory experiments of vacuum treatment in combination with an O2 absorber for the suppression of Sitophilus granaries infestations in stored grain samples. Crop Prot. 2014;61:79–83. doi: 10.1016/j.cropro.2014.03.018. DOI

Golob P., Cox J.R., Kilminster K. Evaluation of insecticide dips as protectants of stored dried fish from dermestid beetle infestation. J. Stored Prod. Res. 1987;23:47–56. doi: 10.1016/0022-474X(87)90035-X. DOI

Stara J., Stejskal V., Nesvorna M., Plachy J., Hubert J. Efficacy of selected pesticides against synanthropic mites under laboratory assay. Pest. Manag. Sci. 2011;67:446–457. doi: 10.1002/ps.2083. PubMed DOI

Rogers W., Campbell Y.L., Zhang X., Shao W., White S., Phillips T.W., Schilling M.W. The application of food grade short chain fatty acids to prevent infestation of Tyrophagus putrescentiae on dry cured ham and the effects on sensory properties. J. Stored Prod. Res. 2020;88:101684. doi: 10.1016/j.jspr.2020.101684. DOI

Shao W., Campbell Y.L., Phillips T.W., Freeman C., Kundu S., Crist C.A., Williams J.B., Schilling M.W. The application of chitosan in food-grade coatings to control Tyrophagus putrescentiae on dry-cured hams and the effects on sensory properties. J. Stored Prod. Res. 2021;94:101899. doi: 10.1016/j.jspr.2021.101899. DOI

Zhao Y., Abbar S., Phillips T.W., Williams J.B., Smith B.S., Schilling M.W. Developing food-grade coatings for dry-cured hams to protect against ham mite infestation. Meat Sci. 2016;113:73–79. doi: 10.1016/j.meatsci.2015.11.014. PubMed DOI

Campbell Y., Shao W., Dinh T., To K., Rogers W., Zhang X., Phillips T., Schilling W. Use of nets treated with food grade coatings on controlling mold growth and mite infestation in dry-cured ham aging facilities. J. Stored Prod. Res. 2020;89:101716. doi: 10.1016/j.jspr.2020.101716. DOI

Campbell Y., Zhang X., Shao W., Williams J.B., Kim T., Goddard J., Abbar S., Phillips T., Schilling M.W. Use of nets treated with food-grade coatings on dry-cured ham to control Tyrophagus putrescentiae infestations without impacting sensory properties. J. Stored Prod. Res. 2018;76:30–36. doi: 10.1016/j.jspr.2017.12.003. DOI

Palermo D., Giunti G., Laudani F., Palmeri V., Campolo O. Essential oil-based nano-biopesticides: Formulation and bioactivity against the confused flour beetle Tribolium confusum. Sustainability. 2021;13:9746. doi: 10.3390/su13179746. DOI

Nikolaou P., Marciniak P., Adamski Z., Ntalli N. Controlling stored products’ pests with plant secondary metabolites: A review. Agriculture. 2021;11:879. doi: 10.3390/agriculture11090879. DOI

Turek C., Stintzing F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI

Giunti G., Laudani F., Lo Presti E., Bacchi M., Palmeri V., Campolo O. Contact toxicity and ovideterrent activity of three essential oil-based nano-emulsions against the olive fruit fly Bactrocera oleae. Horticulturae. 2022;8:240. doi: 10.3390/horticulturae8030240. DOI

Pascual-Villalobos M., Castañé C., Martín F., López M., Guirao P., Riudavets J. (E)-Anethole microspheres as an alternative insecticide in funnel traps. J. Stored Prod. Res. 2021;93:101862. doi: 10.1016/j.jspr.2021.101862. DOI

Camara M.C., Monteiro R.A., Carvalho L.B., Oliveira J.L., Fraceto L.F. Enzyme stimuli-responsive nanoparticles for bioinsecticides: An emerging approach for uses in crop protection. ACS Sustain. Chem. Eng. 2021;9:106–112. doi: 10.1021/acssuschemeng.0c08054. DOI

De Oliveira J.L., Campos E.V., Camara M.C., Della Vechia J.F., de Matos S.T.S., de Andrade D.J., Goncalves K.C., Nascimento J.D., Polanczyk R.A., de Araujo D.R., et al. Hydrogels containing botanical repellents encapsulated in zein nanoparticles for crop protection. ACS Appl. Nano Mater. 2019;3:207–217. doi: 10.1021/acsanm.9b01917. DOI

Kelany Y., Ibrahim A., Hegazy M. Improving the efficiency of two local baits used for the control of the German cockroach, Blattella germanica (L.), (Dictyoptera: Blattellidae) Int. J. Pharm. Biol. Sci. 2017;12:59–66.

Teli M.D., Chavan P.P. Application of gelatine based microcapsules containing mosquito repellent oils on cellulosic biopolymer. J. Bionanosci. 2016;10:390–395. doi: 10.1166/jbns.2016.1396. DOI

Rana M., Singh S.S.J., Yadav S. Effect of microencapsulated plant extracts on mosquito repellency. J. Appl. Nat. Sci. 2017;9:2127–2131. doi: 10.31018/jans.v9i4.1498. DOI

Lucia A., Toloza A.C., Guzmán E., Ortega F., Rubio R.G. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ. 2017;5:e3171. doi: 10.7717/peerj.3171. PubMed DOI PMC

Kamari A., Yusoff S.N.M., Wong S.T.S., Fatimah I. A mini review of materials used as improvers for insect and arthropod pest repellent textiles. Curr. Appl. Sci. Technol. 2022;22:18. doi: 10.55003/cast.2022.04.22.001. DOI

Oyedele A.O., Gbolade A.A., Sosan M.B., Adewoyin F.B., Soyelu O.L., Orafidiya O.O. Formulation of an effective mosquito-repellent topical product from lemongrass oil. Phytomedicine. 2002;9:259–262. doi: 10.1078/0944-7113-00120. PubMed DOI

Abd El-Bar M., Fawki S. Fumigant activity and chemical composition of three essential oils used in gelatin capsules for the control of Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae) in Egypt. Afr. Entomol. 2021;29:534–546. doi: 10.4001/003.029.0534. DOI

Navarro S., Zehavi D., Angel S., Finkelman S. Natural nontoxic insect repellent packaging materials. In: Wilson C.L., editor. Intelligent and Active Packaging for Fruits and Vegetables. CRC Press; New York, NY, USA: 2007. pp. 201–236.

Milićević Z., Krnjajić S., Stević M., Ćirković J., Jelušić A., Pucarević M., Popović T. Encapsulated clove bud essential oil: A new perspective as an eco-friendly biopesticide. Agriculture. 2022;12:338. doi: 10.3390/agriculture12030338. DOI

Picard I., Hollingsworth G.R., Salmieri S., Lacroix M. Repellency of essential oils to Frankliniella occidentalis (Thysanoptera: Thripidae) as affected by type of oil and polymer release. J. Econ. Entom. 2012;105:1238–1247. doi: 10.1603/EC11292. PubMed DOI

Trematerra P., Athanassiou C., Stejskal V., Sciarretta A., Kavallieratos N., Palyvos N. Large-scale mating disruption of Ephestia spp. and Plodia interpunctella in Czech Republic, Greece and Italy. J. Appl. Entomol. 2011;135:749–762. doi: 10.1111/j.1439-0418.2011.01632.x. DOI

Ortiz A., Porras A., Marti J., Tudela A., Rodríguez-González Á., Sambado P. Mating disruption of the olive moth Prays oleae (Bernard) in olive groves using aerosol dispensers. Insects. 2021;12:1113. doi: 10.3390/insects12121113. PubMed DOI PMC

Mohareb A., Thévenon M.-F., Wozniak E., Gérardin P. Effects of monoglycerides on leachability and efficacy of boron wood preservatives against decay and termites. Int. Biodeter. Biodegr. 2010;64:135–138. doi: 10.1016/j.ibiod.2009.12.004. DOI

Patachia S., Croitoru C. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier; Amsterdam, The Netherlands: 2016. Biopolymers for wood preservation; pp. 305–332.

Alade A.A., Naghizadeh Z., Wessels C.B., Tyhoda L. A review of the effects of wood preservative impregnation on adhesive bonding and joint performance. J. Adhes. Sci. Technol. 2021;36:1593–1617. doi: 10.1080/01694243.2021.1981651. DOI

Wang C., Lee C.Y., Rust M.K. Biology and Management of the German Cockroach. 1st ed. CABI; Wallingford, UK: 2021. pp. 1–304.

Welzel K.F., Choe D.H. Development of a pheromone-assisted baiting technique for Argentine ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2016;109:1303–1309. doi: 10.1093/jee/tow015. PubMed DOI

McCalla K.A., Tay J.-W., Mulchandani A., Choe D.-H., Hoddle M.S. Biodegradable alginate hydrogel bait delivery system effectively controls high-density populations of Argentine ant in commercial citrus. J. Pest Sci. 2020;93:1031–1042. doi: 10.1007/s10340-019-01175-9. DOI

Campbell K.J., Beek J., Eason C.T., Glen A.S., Godwin J., Gould F., Holmes N.D., Howald G.R., Madden F.M., Ponder J.B. The next generation of rodent eradications: Innovative technologies and tools to improve species specificity and increase their feasibility on islands. Biol. Conserv. 2015;185:47–58. doi: 10.1016/j.biocon.2014.10.016. DOI

Vendl T., Frankova M., Aulicky R., Stejskal V. First record of the development of Sitophilus oryzae on two rodent bait formulations and literature overview of stored product arthropods infestations in rodent baits. J. Stored Prod. Res. 2020;86:101557. doi: 10.1016/j.jspr.2019.101557. DOI

Horak K.E. RNAi: Applications in vertebrate pest management. Trends Biotechnol. 2020;38:1200–1202. doi: 10.1016/j.tibtech.2020.05.001. PubMed DOI

Brevik K., Schoville S., Mota-Sanchez D., Chena Y. Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag. Sci. 2018;74:1953–1963. doi: 10.1002/ps.4899. PubMed DOI

Sanou A., Nelli L., Guelbéogo W.M., Cissé F., Tapsoba M., Ouédraogo P., Sagnon N., Ranson H., Matthiopoulos J., Ferguson H.M. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Sci. Rep. 2021;11:17569. doi: 10.1038/s41598-021-96759-w. PubMed DOI PMC

Aulicky R., Stejskal V., Frydova B., Athanassiou C.G. Susceptibility of two strains of the confused flour beetle (Coleoptera: Tenebrionidae) following phosphine structural mill fumigation: Effects of concentration, temperature, and flour deposits. J. Econ. Entomol. 2015;108:2823–2830. doi: 10.1093/jee/tov257. PubMed DOI

Aulicky R., Stejskal V., Frydova B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. J. Stored Prod. Res. 2019;81:107–113. doi: 10.1016/j.jspr.2019.02.003. DOI

Yang Q., Kucerova Z., Li Z., Kalinović I., Stejskal V., Opit G., Cao Y. Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. J. Stored Prod. Res. 2012;48:120–125. doi: 10.1016/j.jspr.2011.10.007. DOI

Chandrashekharaiah M., Kandakoor S.B., Gowda G.B., Kammar V., Chakravarthy A.K. Nanomaterials: A review of their action and application in pest management and evolution of DNA-tagged particles. In: Chakravarthy A.K., editor. New Horizons in Insect Science: Towards Sustainable Pest Management. Springer; Berlin, Germany: 2015. pp. 113–126.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...