Minimal Thermal Requirements for Development and Activity of Stored Product and Food Industry Pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RO 0418
Ministerstvo Zemědělství
VH20182021038
Ministerstvo Vnitra České Republiky
31772230
National Natural Science Foundation of China-Yunnan Joint Fund
PubMed
31126156
PubMed Central
PMC6571962
DOI
10.3390/insects10050149
PII: insects10050149
Knihovny.cz E-zdroje
- Klíčová slova
- development, flying, forensic entomology, individual, pest management, populations, respiration, temperature, thresholds, walking,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Low temperatures play an important role in arthropods because they affect both the individual and population development of all physiological and behavioural activities. Manipulation with low temperatures is a primary nonchemical pest control method. For stored product and food industry practitioners, a knowledge of pest thermal requirements, in particular threshold temperatures at which development and other activities of a particular pest species cease, is of crucial importance. This review presents summary data regarding the lower temperature thresholds of 121 species of stored product and food industry pests from six arthropod taxa (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera, and Blattodea). In particular, this review collected and summarized information regarding the lower development thresholds, lower population thresholds, lower acoustic or respiratory thresholds, lower walking and flying thresholds and lower trap capture thresholds for flying and walking arthropods. The average lower development threshold (LDT) differed among orders: the lowest was reported for Acari (6.8 °C) and Diptera (8.1 °C), followed by Lepidoptera (11.3 °C) and Psocoptera (13.8 °C), and the highest was reported for Coleoptera (14 °C) and Blattodea (15 °C). An exclusion-function was established showing the percentage of pest species (n = 112) that were developmentally suppressed (excluded) due to temperatures reaching the LDT in the range of decreasing temperatures from 25 °C to 0 °C. We scaled various temperature thresholds from the lowest to highest temperature as follows: the walking threshold, the trap capture threshold for walking insects, the lower development threshold, lower population threshold, lower flying threshold and the lower trap capture threshold for flying pests. Important pest species were identified for which information regarding the lower temperature threshold is missing, or for which the information is too variable and should be refined in future research.
Zobrazit více v PubMed
Hagstrum D.W., Subramanyam B. Stored-Product Insect Resource. AACC International; Saint Paul, MN, USA: 2009. p. 509.
Stejskal V., Aulicky R., Kucerova Z. Pest control strategies and damage potential of seed-infesting pests in the Czech stores—A review. Plant Protect. Sci. 2014;50:165–173. doi: 10.17221/10/2014-PPS. DOI
Stejskal V., Hubert J., Aulicky R., Kucerova Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 2015;64:122–132. doi: 10.1016/j.jspr.2014.12.006. DOI
Sinha R.N., Wallace H.A. Ecology of insect-induced hot spots in stored grain in western Canada. Res. Popul. Ecol. 1966;8:107–132.
Mani S., Muir W.E., Jayas D.S., White N.D.G. Computer modelling of insect-induced hot spots in stored wheat. Can. Biosyst. Eng. 2001;43:4–7.
Dixon A.F., Honek A., Keil P., Kotela M.A.A., Sizling A.L., Jarosik V. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 2009;23:257–264. doi: 10.1111/j.1365-2435.2008.01489.x. DOI
Rebaudo F., Rabhi V.B. Modeling temperature—Dependent development rate and phenology in insects: Review of major developments, challenges, and future directions. Entomol. Exp. Appl. 2018;166:607–617. doi: 10.1111/eea.12693. DOI
Mellanby K. Low temperature and insect activity. Proc. R. Soc. Lond. B Biol. Sci. 1939;127:473–487.
Nakakita H., Ikenaga H. Action of low temperature on physiology of Sitophilus zeamais Motschulsky and Sitophilus oryzae (L.) (Coleoptera: Curculionidae) in rice storage. J. Stored Prod. Res. 1997;33:31–38. doi: 10.1016/S0022-474X(96)00022-7. DOI
Bentley E.W., Gunn D.L., Ewer D.W. The biology and behaviour of Ptinus tectus Boie. (Coleoptera, Ptinidae), a pest of stored products: I. The daily rhythm of locomotory activity, especially in relation to light and temperature. J. Exp. Biol. 1941;18:182–195.
Honek A. Geographical variation in thermal requirements for insect development. Eur. J. Entomol. 1996;93:303–312.
Dendy A., Elkington H.D. Report on the vitality and rate of multiplication of certain grain insects under various conditions of temperature and moisture. Rep. Grain Pests Gomm. Roy. Soc. 1920;7:1–52.
Back E.A., Cotton R. Relative resistance of the rice weevil Sitophilus oryzae L. and the granary weevil S. granarius L. to high and low temperatures. J. Agric. Res. 1924;28:1043–1044.
Beckett S.J. Insect and mite control by manipulating temperature and moisture before and during chemical-free storage. J. Stored Prod. Res. 2011;47:284–292. doi: 10.1016/j.jspr.2011.08.002. DOI
Kohshima S. A novel cold-tolerant insect found in a Himalayan glacier. Nature. 1984;310:225–227. doi: 10.1038/310225a0. DOI
Hazell S.P., Groutides C., Neve B.P., Blackburn T.M., Bale J.S. A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. J. Insect Physiol. 2010;56:115–122. doi: 10.1016/j.jinsphys.2009.08.020. PubMed DOI
Wakefield M.E. Storage arthropod pest detection-current status and future directions. In: Lorini I., Bacaltchuk B., Beckel H., editors. Proceedings of the 9th International Working Conference on Stored Product Protection; Sao Paulo, Brazil. 15–18 October 2006; Campinas, Brazil: Brazilian Post Harvest Association; 2006. pp. 371–384.
Jian F., Fields P.G., Hargreaves K., Jayas D.S., White N.D. Chill-coma and minimum movement temperatures of stored-product beetles in stored wheat. J. Econ. Entomol. 2015;108:2471–2478. doi: 10.1093/jee/tov196. PubMed DOI
Beckett S.J., Fields P.G., Subramanyam B.H. Disinfestation of stored products and associated structures using heat. In: Tang J., Mitcham E., Wang S., Lurie S., editors. Heat Treatments for Post Harvest Pest Control: Theory and Practice. CABI; Wallingford, Oxfordshire, UK: 2007. pp. 182–237.
Mason L.J., Strait C.A. Stored Product Integrated Pest Management with Extreme Temperatures. In: Hallman G.J., Denlinger D.L., editors. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press; Boulder, CO, USA: 1998. pp. 141–177.
Fields P.G. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 1992;28:89–118. doi: 10.1016/0022-474X(92)90018-L. DOI
Kiritani K. The low development threshold temperature and the thermal constant in insects, mites and nematodes in Japan. Misc. Publ. Natl. Inst. Agro Environ. Sci. 1997;21:1–72.
Honek A., Kocourek F. Temperature and development time in insects: A general relationship between thermal constants. Zool. Jb. Syst. 1990;117:401–439.
Jarosik V., Honek A., Magarey R.D., Skuhrovec J. Developmental database for phenology models: Related insect and mite species have similar thermal requirements. J. Econ. Entomol. 2011;104:1870–1876. doi: 10.1603/EC11247. PubMed DOI
Imura O. Thermal requirements for development of stored-product insects. Tribolium Inf. Bull. 1990;30:58–68.
Howe R.W. A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. J. Stored Prod. Res. 1965;1:177–184. doi: 10.1016/0022-474X(65)90018-4. DOI
Hagstrum D.W., Subramanyan S. Fundamentals of Stored—Product Entomology. AACC International; St. Paul, MN, USA: 2006. p. 323.
Andreadis S.S., Athanassiou C.G. A review of insect cold hardiness and its potential in stored product insect control. Crop Prot. 2017;91:93–99. doi: 10.1016/j.cropro.2016.08.013. DOI
Kiritani K. The low development threshold temperature and the thermal constant in insects and mites in Japan. Bull. Natl. Inst. Agro Environ. Sci. 2012;31:1–74.
Stacey D.A., Fellows M.D.E. Temperature and the development rates of thrips: Evidence for a constraint on local adaptation? Eur. J. Entomol. 2002;99:399–404. doi: 10.14411/eje.2002.049. DOI
De Reaumur R.A.F. Observations du thermomètre faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et quelques unes de nos iles de l’Amérique. Mémoires l’Académie R. Sci. 1735:545–576.
Honek A., Kocourek F. Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): Some general trends. Oecologia. 1988;76:455–460. doi: 10.1007/BF00377042. PubMed DOI
Sinha R.N. Climate and potential range of distribution of stored-product mites in Japan. J. Econ. Entomol. 1968;61:70–75. doi: 10.1093/jee/61.1.70. DOI
Navarro S., Noyes R. The Mechanics and Physics of Modern Grain Aeration Management. CRC Press; Boca Raton, FL, USA: 2002. p. 647.
Evans D.E. The survival of immature grain beetles at low temperatures. J. Stored Prod. Res. 1987;23:79–83. doi: 10.1016/0022-474X(87)90020-8. DOI
MacMillan H.A., Sinclair B.J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 2011;57:12–20. doi: 10.1016/j.jinsphys.2010.10.004. PubMed DOI
Coombs M.R., Bale J.S. Thermal thresholds of the predatory mite Balaustium hernandezi. Physiol. Entomol. 2014;39:120–126. doi: 10.1111/phen.12055. PubMed DOI PMC
Cowles R.B., Bogert C.M. A preliminary study of the thermal requirements of desert reptiles. Iguana. 1944;83:53.
Allen J.L., Clusella-Trullas S., Chown S.L. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae) J. Insect Physiol. 2012;58:669–678. doi: 10.1016/j.jinsphys.2012.01.016. PubMed DOI
Wakefield M.E., Cogan P.M. Laboratory evaluation of traps for the detection of beetle pests in bulk grain. J. Stored Prod. Res. 2007;43:546–549. doi: 10.1016/j.jspr.2007.03.004. DOI
Stejskal V. The influence of food and shelter on the efficacy of a commercial sticky trap in Tribolium castaneum (Coleoptera: Tenebrionidae) J. Stored Prod. Res. 1995;31:229–233. doi: 10.1016/0022-474X(95)00011-U. DOI
Aulicky R., Stejskal V., Kucerova Z., Trematerra P. Trapping of internal and external feeding stored grain beetle pests with two types of pitfall traps: A two-year field study. Plant Protect. Sci. 2016;52:45–53. doi: 10.17221/30/2015-PPS. DOI
Cox P.D., Dolder H.S. A simple flight chamber to determine flight activity in small insects. J. Stored Prod. Res. 1995;31:311–316. doi: 10.1016/0022-474X(95)00023-Z. DOI
Cox P.D., Wakefield M.E., Jacob T.A. The effects of temperature on flight initiation in a range of moths, beetles and parasitoids associated with stored products. J. Stored Prod. Res. 2007;43:111–117. doi: 10.1016/j.jspr.2005.11.006. DOI
Throne J.E., Cline L.D. Seasonal flight activity and seasonal abundance of selected stored-product Coleoptera around grain storages in South Carolina. J. Agric. Entomol. 1994;11:321–338.
Aspaly G., Stejskal V., Pekar S., Hubert J. Temperature-dependent population growth of three species of stored product mites (Acari: Acaridida) Exp. Appl. Acarol. 2007;42:37–46. doi: 10.1007/s10493-007-9074-1. PubMed DOI
Trudgill D.L. Why do tropical poikilothermic organisms tend to have higher threshold temperature for development than temperate ones? Funct. Ecol. 1995;9:136–137.
Yurk B.P., Powell J.A. Modeling the effects of developmental variation on insect phenology. Bull. Math. Biol. 2010;72:1334–1360. doi: 10.1007/s11538-009-9494-7. PubMed DOI
Campbell A., Frazer B.D., Gilbert N.G.A.P., Gutierrez A.P., Mackauer M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 1974;11:431–438. doi: 10.2307/2402197. DOI
Umeya K. Threshold temperature and thermal constants for development of the diamond-back moth, Plutella xylostella L., with reference to local differences. Jpn. J. Appl. Entomol. Zool. 1973;17:19–24. doi: 10.1303/jjaez.17.19. DOI
Lamb R.J., MacKay P.A., Gerber G.H. Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures? Oecologia. 1987;72:170–177. doi: 10.1007/BF00379263. PubMed DOI
Bergant K., Trdan S. How reliable are thermal constants for insect development when estimated from laboratory experiments? Entomol. Exp. Appl. 2006;120:251–256. doi: 10.1111/j.1570-7458.2006.00433.x. DOI
Subramanyam B., Hagstrum D.W. Predicting development times of six stored-product moth species (Lepidoptera: Pyralidae) in relation to temperature, relative humidity, and diet. Eur. J. Entomol. 1993;90:51–64.
Honek A. The relationship between thermal constants for insect development: A verification. Acta Soc. Zool. Bohem. 1996;60:115–152.
Jarosik V., Honek A., Dixon A.F. Developmental rate isomorphy in insects and mites. Am. Nat. 2002;160:497–510. doi: 10.1086/342077. PubMed DOI
David M.H., Mills R.B., White G.D. Effects of low temperature acclimation on developmental stages of stored-product insects. Environ. Entomol. 1977;6:181–184. doi: 10.1093/ee/6.1.181. DOI
Evans D.E. The influence of relative humidity and thermal acclimation on the survival of adult grain beetles in cooled grain. J. Stored Prod. Res. 1983;19:173–180. doi: 10.1016/0022-474X(83)90005-X. DOI
Hubert J., Pekar S., Nesvorna M., Sustr V. Temperature preference and respiration of acaridid mites. J. Econ. Entomol. 2010;103:2249–2257. doi: 10.1603/EC10237. PubMed DOI
Evans D.E. Further studies on acclimatization to low temperatures in the grain weevils Sitophilus oryzae (L.) and Sitophilus granarius (L.) Aust. J. Ecol. 1980;5:371–378. doi: 10.1111/j.1442-9993.1980.tb01259.x. DOI
Honek A., Jarosik V., Martinkova Z., Novak I. Food induced variation of thermal constants of development and growth of Autographa gamma (Lepidoptera: Noctuidae) larvae. Eur. J. Entomol. 2002;99:241–252. doi: 10.14411/eje.2002.033. DOI
Hagstrum D.W., Milliken G.A. Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann. Entomol. Soc. Am. 1988;81:539–546. doi: 10.1093/aesa/81.4.539. DOI
Subramanyam B.H., Hagstrum D.W. Quantitative analysis of temperature, relative humidity, and diet influencing development of the larger grain borer, Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae) Int. J. Pest Manag. 1991;37:195–202. doi: 10.1080/09670879109371581. DOI
Shi P.J., Reddy G.V., Chen L., Ge F. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (I) empirical models. Ann. Entomol. Soc. Am. 2016;109:211–215. doi: 10.1093/aesa/sav121. DOI
Ikemoto T., Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 2000;29:671–682. doi: 10.1603/0046-225X-29.4.671. DOI
Davidson J. On the relationship between temperature and rate of development of insects at constant temperatures. J. Anim. Ecol. 1944;13:26–38. doi: 10.2307/1326. DOI
Logan J.A., Wollkind D.J., Hoyt S.C., Tanigoshi L.K. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 1976;5:1133–1140. doi: 10.1093/ee/5.6.1133. DOI
Lactin D.J., Holliday N.J., Johnson D.L., Craigen R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 1995;24:68–75. doi: 10.1093/ee/24.1.68. DOI
Briere J.F., Pracros P., Le Roux A.Y., Pierre J.S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 1999;28:22–29. doi: 10.1093/ee/28.1.22. DOI
Wang Y., Yang L., Zhang Y., Tao L., Wang J. Development of Musca domestica at constant temperatures and the first case report of its application for estimating the minimum postmortem interval. Forensic Sci. Int. 2018;285:172–180. doi: 10.1016/j.forsciint.2018.02.004. PubMed DOI
Defilippo F., Pinna M., Calzolari M., Dottori M., Bonilauri P. Stored-product forensic entomology: Study of development of Plodia interpunctella (Lepidoptera: Pyralidae) and use of data in determining time intervals of food infestation. In: Vanin S., Bourguignon L., Charabidze D., Whitaker A., Aubernon C., De Carvalho Moretti T., Pasquerault T., Amendt J., Brown K., Campobasso C., editors. Proceedings of the 14th Meeting European Association for Forensic Entomology; Treviso, Italy. 7–10 June 2017; Düsseldorf, Germany: EAFA; 2017. p. 40.
Burges H.D., Burrell N.J. Cooling bulk grain in the British climate to control storage insects and to improve keeping quality. J. Sci. Food Agric. 1964;15:32–50. doi: 10.1002/jsfa.2740150106. DOI
Armitage D.M., Stables L.M. Effects of aeration on established insect infestations in bins of wheat. Prot. Ecol. 1984;6:63–73.
Arthur F.H., Takahashi K., Hoernemann C.K., Soto N. Potential for autumn aeration of stored rough rice and the potential number of generations of Sitophilus zeamais Motschulsky in milled rice in Japan. J. Stored Prod. Res. 2003;39:471–487. doi: 10.1016/S0022-474X(02)00038-3. DOI
Trematerra P., Fleurat-Lessard F. Food industry practices affecting pest management. Stewart Postharvest Rev. 2015;11:1–7.
Mansbridge G.H. Proceedings of the Royal Entomological Society of London. Series A, General Entomology. Volume 11. Blackwell Publishing Ltd.; Oxford, UK: 1936. A note on the resistance to prolonged cold of some insect pests of stored products; pp. 83–86.
Renault D., Salin C., Vannier G., Vernon P. Survival and chill-coma in the adult lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), exposed to low temperatures. J. Therm. Biol. 1999;24:229–236. doi: 10.1016/S0306-4565(99)00015-7. DOI
Ni W.L., Li Z.H., Chen H.J., Wan F.H., Qu W.W., Zhang Z., Kriticos D.J. Including climate change in pest risk assessment: The peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) Bull. Entomol. Res. 2012;102:173–183. doi: 10.1017/S0007485311000538. PubMed DOI
Jarosik V., Kenis M., Honek A., Skuhrovec J., Pysek P. Invasive insects differ from non-invasive in their thermal requirements. PLoS ONE. 2015;10:e0131072. doi: 10.1371/journal.pone.0131072. PubMed DOI PMC
Bond E.J. Manual of Fumigation for Insect Control. Food and Agriculture Organization of the United Nations; Rome, Italy: 1984. FAO Plant Production and Protection Paper 54.
Aulicky R., Stejskal V., Frydova B., Athanassiou C.G. Susceptibility of two strains of the confused flour beetle (Coleoptera: Tenebrionidae) following phosphine structural mill fumigation: Effects of concentration, temperature, and flour deposits. J. Econ. Entomol. 2015;108:2823–2830. doi: 10.1093/jee/tov257. PubMed DOI
Navarro S. The use of modified and controlled atmospheres for the disinfestation of stored products. J. Pest Sci. 2012;85:301–322. doi: 10.1007/s10340-012-0424-3. DOI
Boardman L., Sorensen J.G., Johnson S.A., Terblanche J.S. Interactions between controlled atmospheres and low temperature tolerance: A review of biochemical mechanisms. Front. Physiol. 2011;2:92. doi: 10.3389/fphys.2011.00092. PubMed DOI PMC
Cotton R.T. The relation of respiratory metabolism of insects to their susceptibility to fumigants. J. Econ. Entomol. 1932;25:1088–1103. doi: 10.1093/jee/25.5.1088. DOI
Hagstrum D.W., Flinn P.W., Subramanyam B. Predicting insect density from probe trap catch in farm-stored wheat. J. Stored Prod. Res. 1998;34:251–262. doi: 10.1016/S0022-474X(98)00006-X. DOI
Fleurat-Lessard F., Tomasini B., Kostine L., Fuzeau B. Acoustic detection and automatic identification of insect stages activity in grain bulks by noise spectra processing through classification algorithms. In: Lorini I., Bacaltchuk B., Beckel H., editors. Proceedings of the 9th International Working Conference on Stored Product Protection; Sao Paulo, Brazil. 15–18 October 2006; Campinas, Brazil: Brazilian Post Harvest Association; 2006. pp. 476–486.
Hagstrum D.W., Flinn P.W. Comparison of acoustical detection of several species of stored-grain beetles (Coleoptera: Curculionidae, Tenebrionidae, Bostrichidae, Cucujidae) over a range of temperatures. J. Econ. Entomol. 1993;86:1271–1278. doi: 10.1093/jee/86.4.1271. DOI
Mankin R.W., Shuman D., Weaver D.K. Thermal treatments to increase acoustic detectability of Sitophilus oryzae (Coleoptera: Curculionidae) in stored grain. J. Econ. Entomol. 1999;92:453–462. doi: 10.1093/jee/92.2.453. PubMed DOI
Sanchez-Ramos I., Alvarez-Alfageme F., Castanera P. Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity. J. Stored Prod. Res. 2007;43:64–72. doi: 10.1016/j.jspr.2005.10.002. DOI
Collins D.A. A review on the factors affecting mite growth in stored grain commodities. Exp. Appl. Acarol. 2012;56:191–208. doi: 10.1007/s10493-012-9512-6. PubMed DOI
Solomon M.E. Ecology of the flour mite, Acarus siro L. (= Tyraglyphus farinae DeG.) Ann. Appl. Biol. 1962;50:178–184. doi: 10.1111/j.1744-7348.1962.tb06000.x. DOI
Xia B., Luo D., Zou Z., Zhu Z. Effect of temperature on the life cycle of Aleuroglyphus ovatus (Acari: Acaridae) at four constant temperatures. J. Stored Prod. Res. 2009;45:190–194. doi: 10.1016/j.jspr.2009.02.001. DOI
Okamoto M. The effects of various temperatures on the life cycle of Carpoglyphus lactis. Jpn. J. Sanit. Zool. 1986;37:221–227. doi: 10.7601/mez.37.221. DOI
Guldali B., Cobanoglu S. Investigation on the life table parameters and development threshold of Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) at different temperatures and relative humidities. Turk. Entomol. Derg. 2010;34:53–65. (In Turkish with English abstract)
Palyvos N.E., Emmanouel N.G. Temperature-dependent development of the predatory mite Cheyletus malaccensis (Acari: Cheyletidae) Exp. Appl. Acarol. 2009;47:147–158. doi: 10.1007/s10493-008-9200-8. PubMed DOI
Maurer V., Baumgärtner J. Temperature influence on life table statistics of the chicken mite Dermanyssus gallinae (Acari: Dermanyssidae) Exp. Appl. Acarol. 1992;15:27–40. doi: 10.1007/BF01193965. PubMed DOI
Biddulph P., Crowther D., Leung B., Wilkinson T., Hart B., Oreszczyn T., Pretlove S., Ridley I., Ucci M. Predicting the population dynamics of the house dust mite Dermatophagoides pteronyssinus (Acari: Pyroglyphidae) in response to a constant hygrothermal environment using a model of the mite life cycle. Exp. Appl. Acarol. 2007;41:61–86. doi: 10.1007/s10493-007-9056-3. PubMed DOI
Fan Q.H., Chen Y., Wang Z.Y. Acaridia (Acari: Astigmatina) of China: A review of research progress. Zoosymposia. 2010;4:225–259.
Kheradmand K., Kamali K., Fathipour Y., Goltapeh E.M. Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. J. Stored Prod. Res. 2007;43:276–281. doi: 10.1016/j.jspr.2006.06.007. DOI
Li C., Li Z. Influence of temperature on development and reproduction of experimental populations of Araecerus fasciculatus (Coleoptera: Anthribidae) Acta Entomol. Sin. 2009;52:1385–1389.
James D.G., Vogele B. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.)(Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 2000;39:180–184. doi: 10.1046/j.1440-6055.2000.00163.x. DOI
Subramanyam B.H., Hagstrum D.W., Harein P.K. Upper and lower temperature thresholds for development of six stored-product beetles. In: Fleurat-Lessard F., Ducom P., editors. Proceedings of the Fifth International Working Conference on Stored Product Protection; Bordeaux, France. 9–14 September 1990; Bordeaux, France: Imprimerie du Médoc; 1990. pp. 2029–2037.
Strang T.J.K. A review of published temperatures for the control of pest insects in museums. Collect. Forum. 1992;8:41–67.
Imai T., Miyamoto Y. The developmental parameters of the minute brown scavenger beetle Dienerella argus (Coleoptera: Latridiidae) Appl. Entomol. Zool. 2019;54:75–78. doi: 10.1007/s13355-018-0594-4. DOI
Halstead D.G.H. Some observations on the biology of Lophocateres pusillus (Klug) (Coleoptera: Trogositidae) J. Stored Prod. Res. 1968;4:197–202. doi: 10.1016/0022-474X(68)90010-6. DOI
Omar Y.M., Darwish Y.A., Hassan R.E., Mahmoud M.A. Threshold temperature and heat unit requirements for the development of the granary weevil, Sitophilus granarius (L.) Arch. Phytopathol. Plant Protect. 2014;47:555–563. doi: 10.1080/03235408.2013.814230. DOI
Beckett S.J. Protecting and disinfesting stored products by drying and cooling, and disinfesting stored products during handling by mechanical treatments. In: Carvalho M.O., Fields P.G., Adler C.S., Arthur F.H., Athanassiou C.G., Campbell J.F., Fleurat-Lessard F., Flinn P.W., Hodges R.J., Isikber A.A., et al., editors. Proceedings of the 10th International Working Conference on Stored Product Protection; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius Kühn-Institut; 2010. pp. 219–228.
Partida G.J., Strong R.G. Comparative studies on the biologies of six species of Trogoderma: T. variabile. Ann. Entomol. Soc. Am. 1975;68:115–125. doi: 10.1093/aesa/68.1.115. DOI
Trematerra P., Lucchi A. Nemapogon granellus (L.) pest on corks of wine bottles stored for aging. In: Arthur F.H., Kengkanpanich R., Chayaprasert W., Suthisut D., editors. Proceedings of the 11th International Working Conference on Stored Product Protection; Chiang Mai, Thailand. 24–28 November 2014; Mannheim, Germany: knoell; pp. 885–893.
Sporleder M., Kroschel J., Quispe M.R.G., Lagnaoui A. A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae) Environ. Entomol. 2004;33:477–486. doi: 10.1603/0046-225X-33.3.477. DOI
Shang X., Yang M., Zhang C., Cai L., Feng Y., Qiu T. Effects of temperature on the growth and development of Pyralis farinalis (Lepidoptera: Pyralidae), one insect used for producing insect tea in China. Acta Entomol. Sin. 2013;56:671–679.
Rees D.P., Walker A.J. The effect of temperature and relative humidity on population growth of three Liposcelis species (Psocoptera: Liposcelidae) infesting stored products in tropical countries. Bull. Entomol. Res. 1990;80:353–358. doi: 10.1017/S0007485300050562. DOI
Jiang H.B., Liu J.C., Wang Z.Y., Wang J.J. Temperature-dependent development and reproduction of a novel stored product psocid, Liposcelis badia (Psocoptera: Liposcelididae) Environ. Entomol. 2008;37:1105–1112. doi: 10.1603/0046-225X(2008)37[1105:TDAROA]2.0.CO;2. PubMed DOI
Wang J.J., Tsai J.H., Zhao Z.M., Li L.S. Development and reproduction of the psocid Liposcelis bostrychophila (Psocoptera: Liposcelididae) as a function of temperature. Ann. Entomol. Soc. Am. 2000;93:261–270. doi: 10.1603/0013-8746(2000)093[0261:DAROTP]2.0.CO;2. DOI
Wang J.J., Zhao Z.M., Li L.S. An ecological study on the laboratory population of psocid, Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae) Acta Entomol. Sin. 1999;42:277–283.
Tang P.A., Wang J.J., He Y., Jiang H.B., Wang Z.Y. Development, survival, and reproduction of the psocid Liposcelis decolor (Psocoptera: Liposcelididae) at constant temperatures. Ann. Entomol. Soc. Am. 2008;101:1017–1025. doi: 10.1603/0013-8746-101.6.1017. DOI
Wang J.J., Zhao Z., Li L. Studies on bionomics of Liposcelis entomophila (Psocoptera: Liposcelididae) infesting stored products. Acta Entomol. Sin. 1998;5:149–158.
Dong P., Wang J.J., Jia F.X., Hu F. Development and reproduction of the psocid Liposcelis tricolor (Psocoptera: Liposcelididae) as a function of temperature. Ann. Entomol. Soc. Am. 2007;100:228–235. doi: 10.1603/0013-8746(2007)100[228:DAROTP]2.0.CO;2. DOI
Wang J.J., Ren Y., Wei X.Q., Dou W. Development, survival, and reproduction of the psocid Liposcelis paeta (Psocoptera: Liposcelididae) as a function of temperature. J. Econ. Entomol. 2009;102:1705–1713. doi: 10.1603/029.102.0439. PubMed DOI
Hassan M.W., Dou W., Chen L., Jiang H.B., Wang J.J. Development, survival, and reproduction of the psocid Liposcelis yunnaniensis (Psocoptera: Liposcelididae) at constant temperatures. J. Econ. Entomol. 2011;104:1436–1444. doi: 10.1603/EC11046. PubMed DOI
Wu H., Hu X.P., Appel A.G. Temperature-dependent development and thermal sensitivity of Blaptica dubia (Blattodea: Blaberidae) J. Econ. Entomol. 2016;110:546–551. doi: 10.1093/jee/tow278. PubMed DOI
Stejskal V., Lukas J., Aulicky R. Lower development threshold and thermal constant in the German cockroach, Blattella germanica (L.) (Blattodea: Blattellidae) Plant Protect. Sci. 2003;39:35–38.
Xu Y., Chen S., Yang Y., Zhang W. Development-temperature relationship and temperature dependent parameters of German cockroach, Blattella germanica L. Arthropods. 2017;6:78–85.
Guo K., Zhang D.C., Duan Z.S., Shao W.Z., Liu S., Qiao H.L., Xu C.Q., Chen J. Threshold temperature and effective accumulative temperature of Periplaneta Americana. China J. Chin. Mater. Med. 2018;43:4217–4219. PubMed
Stejskal V., Lukas J., Aulicky R. Temperature-dependent development and mortality of Australian cockroach, Periplaneta australasiae (Fabricius) (Blattodea: Blattidae) Plant Protect. Sci. 2004;40:11–15. doi: 10.17221/3118-PPS. DOI
Donovan S.E., Hall M.J.R., Turner B.D., Moncrieff C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006;20:106–114. doi: 10.1111/j.1365-2915.2006.00600.x. PubMed DOI
Higley L.G., Haskell N.H. Insect Development and Forensic Entomology. In: Byrd J.H., Castner J.L., editors. Forensic Entomology: The Utility of Arthropods in Legal Investigations. CRC Press; Boca Racon, FL, USA: 2001. pp. 287–302.
Richards C.S., Paterson I.D., Villet M.H. Estimating the age of immature Chrysomya albiceps (Diptera: Calliphoridae), correcting for temperature and geographical latitude. Int. J. Legal Med. 2008;122:271–279. doi: 10.1007/s00414-007-0201-7. PubMed DOI
Tochen S., Dalton D.T., Wiman N., Hamm C., Shearer P.W., Walton V.M. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 2014;43:501–510. doi: 10.1603/EN13200. PubMed DOI
Kotze Z., Villet M.H., Weldon C.W. Effect of temperature on development of the blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) Int. J. Legal Med. 2015;129:1155–1162. doi: 10.1007/s00414-015-1153-y. PubMed DOI
Mascarini L.M., Prado A.P.D. Thermal constant of an experimental population of Muscina stabulans (Fallén 1817) (Diptera: Muscidae) in the laboratory. Mem. Inst. Oswaldo Cruz. 2002;97:281–283. doi: 10.1590/S0074-02762002000200026. PubMed DOI
Lefebvre F., Pasquerault T. Temperature-dependent development of Ophyra aenescens (Wiedemann, 1830) and Ophyra capensis (Wiedemann, 1818) (Diptera, Muscidae) Forensic Sci. Int. 2004;139:75–79. doi: 10.1016/j.forsciint.2003.10.014. PubMed DOI
Russo A., Cocuzza G.E., Vasta M.C., Simola M., Virone G. Life fertility tables of Piophila casei L. (Diptera: Piophilidae) reared at five different temperatures. Environ. Entomol. 2006;35:194–200. doi: 10.1603/0046-225X-35.2.194. DOI
Nabity P.D., Higley L.G., Heng-Moss T.M. Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. J. Med. Entomol. 2006;43:1276–1286. doi: 10.1603/0022-2585(2006)43[1276:EOTODO]2.0.CO;2. PubMed DOI
Grassberger M., Reiter C. Effect of temperature on development of the forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae) Forensic Sci. Int. 2002;128:177–182. doi: 10.1016/S0379-0738(02)00199-8. PubMed DOI
Biever K.D., Mulla M.S. Effects of temperature on the developmental stages of Psychoda alternata (Diptera-Psychodidae) Mosq. News. 1966;26:416–419.
Grassberger M., Reiter C. Effect of temperature on development of Liopygia (= Sarcophaga) argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae) and its forensic implications. J. Forensic Sci. 2002;47:1332–1336. doi: 10.1520/JFS15570J. PubMed DOI
Villet M.H., MacKenzie B., Muller W.J. Larval development of the carrion-breeding flesh fly, Sarcophaga (Liosarcophaga) tibialis Macquart (Diptera: Sarcophagidae), at constant temperatures. Afr. Entomol. 2006;14:357–366.
Jian F., Jayas D.S. Detecting and responding to resource and stimulus during the movements of Cryptolestes ferrugineus adults. Food Bioprocess Tech. 2009;2:45–56. doi: 10.1007/s11947-008-0144-0. DOI
Granovsky T.A., Mills R.B. Feeding and mortality of Sitophilus granarius (L.) adults during simulated winter farm bin temperatures. Environ. Entomol. 1982;11:324–326. doi: 10.1093/ee/11.2.324. DOI
Chaudhry H.S., Kapoor R.P.D. Studies on the respiratory metabolism of the Red Flour Beetle. J. Econ. Entomol. 1967;60:1334–1336. doi: 10.1093/jee/60.5.1334. DOI
Emekci M., Navarro S., Donahaye E., Rindner M., Azrieli A. Respiration of Rhyzopertha dominica (F.) at reduced oxygen concentrations. J. Stored Prod. Res. 2004;40:27–38. doi: 10.1016/S0022-474X(02)00076-0. DOI
Hanec W., Dolinski M.G., Loschiavo S.R. The quantitative relationship between temperature and locomotion and respiration was studied with the rusty grain beetle, C. ferrugineus. Manit. Entomol. 1975;9:29–34.
Edwards D.K. Effects of acclimatization and sex on respiration and thermal resistance in Tribolium (Coleoptera: Tenebrionidae) Can. J. Zool. 1958;36:363–382. doi: 10.1139/z58-031. DOI
Wright E.J., Morton R. Daily flight activity of Trogoderma variabile (Coleoptera: Dermestidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Stored Prod. Res. 1995;31:177–184. doi: 10.1016/0022-474X(95)00013-W. DOI
Fardisi M., Mason L.J. Influence of temperature, gender, age, and mating status on cigarette beetle (Lasioderma serricorne (F.)) (Coleoptera: Anobiidae) flight initiation. J. Stored Prod. Res. 2013;52:93–99. doi: 10.1016/j.jspr.2012.12.006. DOI
Giles P.H. Observations in Kenya on the flight activity of stored products insects, particularly Sitophilus zeamais Motsch. J. Stored Prod. Res. 1969;4:317–329. doi: 10.1016/0022-474X(69)90048-4. DOI
Sinclair E.R., Haddrell R.L. Flight of stored products beetles over a grain farming area in southern Queensland. Aust. J. Entomol. 1985;24:9–15. doi: 10.1111/j.1440-6055.1985.tb00177.x. DOI
Williams R.N., Floyd E.H. Flight habits of the maize weevil, Sitophilus zeamais. J. Econ. Entomol. 1970;63:1585–1588. doi: 10.1093/jee/63.5.1585. DOI
Taylor T.A. On the flight activity of Sitophilus zeamais Motsch. (Coleoptera, Curculionidae) and some other grain-infesting beetles in the field and a store. J. Stored Prod. Res. 1971;6:295–306. doi: 10.1016/0022-474X(71)90042-7. DOI
Throne J.E., Cline L.D. Seasonal flight activity of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), and the rice weevil, S. oryzae (L.), in South Carolina. J. Agric. Entomol. 1989;6:183–192.
McKay T., White A.L., Starkus L.A., Arthur F.H., Campbell J.F. Seasonal patterns of stored-product insects at a rice mill. J. Econ. Entomol. 2017;110:1366–1376. doi: 10.1093/jee/tox089. PubMed DOI
Campbell T.L.M. Ph.D. Thesis. Montana State University-Bozeman, College of Agriculture; Bozeman, MT, USA: 2002. Thermal biology of the lesser grain borer Rhyzopertha dominica (F.)(Bostrichidae) and the warehouse pirate bug Xylocoris flavipes (Reuter) (Anthocoridae)
Jian F. Influences of stored product insect movements on integrated pest management decisions. Insects. 2019;10:100. doi: 10.3390/insects10040100. PubMed DOI PMC
Ernst S.A., Mutchmor J.A. Dispersal of three species of grain beetles as a function of thermal acclimation, temperature, and larval size. J. Stored Prod. Res. 1969;5:407–412. doi: 10.1016/0022-474X(69)90015-0. DOI
Barlow C.A., Kerr W.D. Locomotory responses to temperature in the grain weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae) Can. J. Zool. 1969;47:217–224. doi: 10.1139/z69-047. DOI