• This record comes from PubMed

Description of larval morphology and phylogenetic relationships of Heterotemna tenuicornis (Silphidae)

. 2021 Aug 20 ; 11 (1) : 16973. [epub] 20210820

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34417480
PubMed Central PMC8379240
DOI 10.1038/s41598-021-94744-x
PII: 10.1038/s41598-021-94744-x
Knihovny.cz E-resources

Providing clear and detailed morphological descriptions of endemic species in limited areas enables new knowledge of their biology and ecology to be obtained through citizen science. This information can be further used for their protection. Our study presents the first morphological description of the larvae of all three instars of Heterotemna tenuicornis (Brullé, 1836), an endemic species of the Canary Islands that, together with H. britoi García & Pérez, 1996 and H. figurata (Brullé, 1839), belongs to the peculiar genus Heterotemna Wollaston, 1864. Furthermore, we present the first sequences of two mitochondrial genes (COI, 16S) obtained from larval specimens, and cross reference them with sequences from an adult specimen. Phylogenetic analysis of molecular data placed the genus Heterotemna within the genus Silpha Linnaeus, 1758, suggesting paraphyly of Silpha. In our study, we underline the importance of using a combination of morphological description and molecular data, that can be used for barcoding developmental stages which could not otherwise be definitely associated.

See more in PubMed

Farnsworth JE, et al. Next-generation field guides. Bioscience. 2013;63:891–899. doi: 10.1525/bio.2013.63.11.8. DOI

Packer L, Gibbs J, Sheffield C, Anner R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 2009;9:42–50. doi: 10.1111/j.1755-0998.2009.02631.x. PubMed DOI

Hita Garcia F, et al. X-ray microtomography for ant taxonomy: An exploration and case study with two new Terataner (Hymenoptera, Formicidae, Myrmicinae) species from Madagascar. PLoS ONE. 2017;12:e0172641. doi: 10.1371/journal.pone.0172641. PubMed DOI PMC

Wipfler B, Pohl H, Yavorskaya MI, Beutel RG. A review of methods for analysing insect structures—The role of morphology in the age of phylogenomics. Curr. Opin. Insect Sci. 2016;18:60–68. doi: 10.1016/j.cois.2016.09.004. PubMed DOI

El Bizri HR, et al. Involving local communities for effective citizen science: Determining game species’ reproductive status to assess hunting effects in tropical forests. J. Appl. Ecol. 2021;58:224–235. doi: 10.1111/1365-2664.13633. DOI

Oh RM, et al. Citizen science meets integrated taxonomy to uncover the diversity and distribution of Corallimorpharia in Singapore. Raffles Bull. Zool. 2019;67:306–321.

Tiago P, Pereira HM, Capinha C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 2017;20:75–85. doi: 10.1016/j.baae.2017.04.001. DOI

Méndez M, Thomaes A. Biology and conservation of the European stag beetle: Recent advances and lessons learned. Insect Conserv. Divers. 2020 doi: 10.1111/icad.12465. DOI

Morimoto R, Hayashi M. Life cycle of an endangered riffle beetle, Leptelmis gracilis Sharp (Coleoptera: Elmidae), in the Hiikawa River system, Shimane prefecture, Japan. Entomol. Sci. 2020;23:445–452. doi: 10.1111/ens.12442. DOI

Arnold RA, Knisley CB. Biology and conservation of Cicindela ohlone Freitag and Kavanaugh (Coleoptera: Carabidae: Cicindelinae), the endangered Ohlone Tiger Beetle. II. Population ecology of adults and larvae and recommended monitoring methods. Coleopt. Bull. 2018;72:577. doi: 10.1649/0010-065X-72.3.577. DOI

Newton AFJ. Larvae of Staphyliniformia (Coleoptera): Where do we stand? Coleopt. Bull. 1990;44:205–210.

Cardoso P, Erwin TL, Borges PAV, New TR. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011;144:2647–2655. doi: 10.1016/j.biocon.2011.07.024. DOI

Anguita F, Hernán F. The Canary Islands origin: A unifying model. J. Volcanol. Geotherm. Res. 2000;103:1–26. doi: 10.1016/S0377-0273(00)00195-5. DOI

Anguita F, Hernan F. A propagating fracture model versus a hot spot origin for the Canary Islands. Earth Planet. Sci. Lett. 1975;27:11–19. doi: 10.1016/0012-821X(75)90155-7. DOI

Juan C, Emerson BC, Oromí P, Hewitt GM. Colonization and diversification: Towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 2000;15:104–109. doi: 10.1016/S0169-5347(99)01776-0. PubMed DOI

Stearn, W. T. Philip Barker Webb and Canarian botany. In Monographiae Biologicae Canariensis, Vol. 4. 15–29 (1973).

Fernández-Palacios JM, et al. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J. Biogeogr. 2011;38:226–246. doi: 10.1111/j.1365-2699.2010.02427.x. DOI

Ancochea E, et al. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J. Volcanol. Geotherm. Res. 1990;44:231–249. doi: 10.1016/0377-0273(90)90019-C. DOI

Cobolli Sbordoni M, de Matthaeis E, La Rosa G, Mattoccia M, Vigna Taglianti A. Biochemical differentiation and divergence time in the Canarian genus Eutrichopus (Coleoptera, Carabidae) Biogeogr. Asp. Insul. Atti dei Convegni Lincei. 1991 doi: 10.11646/zootaxa.1972.1.2. DOI

Avanzati A, Baratti M, Bernini F. Molecular and morphological differentiation between steganacarid mites (Acari: Oribatida) from the Canary Islands. Biol. J. Linn. Soc. 1994;52:325–340. doi: 10.1111/j.1095-8312.1994.tb00995.x. DOI

del Arco Aguilar MJ, González-González R, Garzón-Machado V, Pizarro-Hernández B. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers. Conserv. 2010;19:3089–3140. doi: 10.1007/s10531-010-9881-2. DOI

Parsons JJ. Human influences on the pine and laurel forests of the Canary Islands. Geogr. Rev. 1981;71:253–271. doi: 10.2307/214699. DOI

Guillou H. Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet. Sci. Lett. 2004;222:599–614. doi: 10.1016/j.epsl.2004.03.012. DOI

Sikes DS. Carrion beetles (Coleoptera: Silphidae) In: Capinera JL, editor. Encyclopedia of Entomology. Springer; 2008. pp. 749–758.

Pérez JJ, García BR. Heterotemna Britoi n. sp. de Silphidae (Coleoptera) de La Palma (Islas Canarias) Anu. Estud. Atlánticos. 1995;1:39–57.

Ikeda H, Kagaya T, Kubota K, Abe T. Evolutionary relationships among food habit, loss of flight, and reproductive traits: Life-history evolution in the Silphinae (Coleoptera: Silphidae) Evolution (N. Y.) 2008;62:2065–2079. PubMed

Newton AF. StaphBase: Staphyliniformia world catalog database (version, Nov 2018) In: Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, van Nieukerken EJ, Penev L, editors. Species 2000 & ITIS Catalogue of Life. University of Reading; 2020.

Machado A. Some additions and corrections to the Coleoptera fauna of the Canary Islands. Graellsia. 2014;70:e005. doi: 10.3989/graellsia.2014.v70.106. DOI

Dobler S, Müller JK. Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: Phylogeny of carrion beetles (Coleoptera, Silphidae) Mol. Phylogenet. Evol. 2000;15:390–402. doi: 10.1006/mpev.1999.0765. PubMed DOI

King JE, Riegler M, Thomas RG, Spooner-Hart RN. Phylogenetic placement of Australian carrion beetles (Coleoptera: Silphidae) Austral Entomol. 2015;54:366–375. doi: 10.1111/aen.12138. DOI

Valcárcel JP, París M. Colección del Museo Nacional de Ciencias Naturales de Madrid. Arq. Entomol. 2015;14:95–104.

Valcárcel J, Prieto Piloña F, Rey-Daluz F. Catálogo de los Silphidae y Agyrtidae de la Península Ibérica e Islas Baleares. Boletín la Soc. Entomológica Aragon. 2002;30:1–32.

Newton AFJ. Silphidae (Staphylinoidea) In: Stehr FW, editor. Immature Insects. Dubuque, IA, USA: Kendall/Hunt; 1991. pp. 339–341.

Klausnitzer, B. 19. Familie: Silphidae. pp. 39–65. In Die Larven der Käfer Mitteleuropas. 4. Band, Polyphaga, Teil 3, sowie Ergänzungen zum 1. bis 3. Band (ed. Klausnitzer, B.) 370. (Goecke & Evers, 1997).

Midgley JM, Villet MH. Metrological framework for selecting morphological characters to identify species and estimate developmental maturity of forensically significant insect specimens. Forensic Sci. Res. 2020 doi: 10.1080/20961790.2020.1794347. PubMed DOI PMC

Frątczak K, Matuszewski S. Classification of forensically relevant larvae according to instar in a closely related species of carrion beetles (Coleoptera: Silphidae: Silphinae) Forensic Sci. Med. Pathol. 2016;12:193–197. doi: 10.1007/s12024-016-9774-0. PubMed DOI PMC

Jakubec P, Novák M, Qubaiová J, Šuláková H, Růžička J. Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae) Int. J. Legal Med. 2019;133:1549–1565. doi: 10.1007/s00414-019-02040-1. PubMed DOI

Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J. Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae) Int. J. Legal Med. 2018;132:939–954. doi: 10.1007/s00414-017-1764-6. PubMed DOI

Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. 1999;41:95–98.

Lawrence J, Ślipiński A. Australian Beetles Morphology, Classification and Keys. CSIRO Publishing; 2013.

Dorsey CK. A comparative study of the larvae of six species of Silpha1 (Coleoptera, Silphidae) Ann. Entomol. Soc. Am. 1940;33:120–139. doi: 10.1093/aesa/33.1.120. DOI

Anderson R. Burying beetle larvae: Nearctic nicrophorus and oriental Ptomascopus morio (Silphidae) Syst. Entomol. 1982;7:249–264. doi: 10.1111/j.1365-3113.1982.tb00443.x. DOI

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.

Lüdecke D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3:772. doi: 10.21105/joss.00772. DOI

Simon C, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994;87:651–701. doi: 10.1093/aesa/87.6.651. DOI

Hosoya T, Araya K. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zool. Sci. 2005;22:1305–1318. doi: 10.2108/zsj.22.1305. PubMed DOI

Hosoya T, Honda M, Araya K. Genetic variations of 16S rRNA gene observed in Ceruchus lignarius and Dorcus rectus rectus (Coleoptera: Lucanidae) Entomol. Sci. 2001 doi: 10.2108/zsj.22.1305. DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucl. Acids Res. 2015;43:W7–W14. doi: 10.1093/nar/gkv318. PubMed DOI PMC

Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10, Version 4.0b10 edn, Version 4 (2002).

Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI

Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (1973).

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...