Description of larval morphology and phylogenetic relationships of Heterotemna tenuicornis (Silphidae)
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34417480
PubMed Central
PMC8379240
DOI
10.1038/s41598-021-94744-x
PII: 10.1038/s41598-021-94744-x
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Coleoptera anatomy & histology classification genetics ultrastructure MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Larva anatomy & histology classification genetics ultrastructure MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Providing clear and detailed morphological descriptions of endemic species in limited areas enables new knowledge of their biology and ecology to be obtained through citizen science. This information can be further used for their protection. Our study presents the first morphological description of the larvae of all three instars of Heterotemna tenuicornis (Brullé, 1836), an endemic species of the Canary Islands that, together with H. britoi García & Pérez, 1996 and H. figurata (Brullé, 1839), belongs to the peculiar genus Heterotemna Wollaston, 1864. Furthermore, we present the first sequences of two mitochondrial genes (COI, 16S) obtained from larval specimens, and cross reference them with sequences from an adult specimen. Phylogenetic analysis of molecular data placed the genus Heterotemna within the genus Silpha Linnaeus, 1758, suggesting paraphyly of Silpha. In our study, we underline the importance of using a combination of morphological description and molecular data, that can be used for barcoding developmental stages which could not otherwise be definitely associated.
See more in PubMed
Farnsworth JE, et al. Next-generation field guides. Bioscience. 2013;63:891–899. doi: 10.1525/bio.2013.63.11.8. DOI
Packer L, Gibbs J, Sheffield C, Anner R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 2009;9:42–50. doi: 10.1111/j.1755-0998.2009.02631.x. PubMed DOI
Hita Garcia F, et al. X-ray microtomography for ant taxonomy: An exploration and case study with two new Terataner (Hymenoptera, Formicidae, Myrmicinae) species from Madagascar. PLoS ONE. 2017;12:e0172641. doi: 10.1371/journal.pone.0172641. PubMed DOI PMC
Wipfler B, Pohl H, Yavorskaya MI, Beutel RG. A review of methods for analysing insect structures—The role of morphology in the age of phylogenomics. Curr. Opin. Insect Sci. 2016;18:60–68. doi: 10.1016/j.cois.2016.09.004. PubMed DOI
El Bizri HR, et al. Involving local communities for effective citizen science: Determining game species’ reproductive status to assess hunting effects in tropical forests. J. Appl. Ecol. 2021;58:224–235. doi: 10.1111/1365-2664.13633. DOI
Oh RM, et al. Citizen science meets integrated taxonomy to uncover the diversity and distribution of Corallimorpharia in Singapore. Raffles Bull. Zool. 2019;67:306–321.
Tiago P, Pereira HM, Capinha C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 2017;20:75–85. doi: 10.1016/j.baae.2017.04.001. DOI
Méndez M, Thomaes A. Biology and conservation of the European stag beetle: Recent advances and lessons learned. Insect Conserv. Divers. 2020 doi: 10.1111/icad.12465. DOI
Morimoto R, Hayashi M. Life cycle of an endangered riffle beetle, Leptelmis gracilis Sharp (Coleoptera: Elmidae), in the Hiikawa River system, Shimane prefecture, Japan. Entomol. Sci. 2020;23:445–452. doi: 10.1111/ens.12442. DOI
Arnold RA, Knisley CB. Biology and conservation of Cicindela ohlone Freitag and Kavanaugh (Coleoptera: Carabidae: Cicindelinae), the endangered Ohlone Tiger Beetle. II. Population ecology of adults and larvae and recommended monitoring methods. Coleopt. Bull. 2018;72:577. doi: 10.1649/0010-065X-72.3.577. DOI
Newton AFJ. Larvae of Staphyliniformia (Coleoptera): Where do we stand? Coleopt. Bull. 1990;44:205–210.
Cardoso P, Erwin TL, Borges PAV, New TR. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011;144:2647–2655. doi: 10.1016/j.biocon.2011.07.024. DOI
Anguita F, Hernán F. The Canary Islands origin: A unifying model. J. Volcanol. Geotherm. Res. 2000;103:1–26. doi: 10.1016/S0377-0273(00)00195-5. DOI
Anguita F, Hernan F. A propagating fracture model versus a hot spot origin for the Canary Islands. Earth Planet. Sci. Lett. 1975;27:11–19. doi: 10.1016/0012-821X(75)90155-7. DOI
Juan C, Emerson BC, Oromí P, Hewitt GM. Colonization and diversification: Towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 2000;15:104–109. doi: 10.1016/S0169-5347(99)01776-0. PubMed DOI
Stearn, W. T. Philip Barker Webb and Canarian botany. In Monographiae Biologicae Canariensis, Vol. 4. 15–29 (1973).
Fernández-Palacios JM, et al. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J. Biogeogr. 2011;38:226–246. doi: 10.1111/j.1365-2699.2010.02427.x. DOI
Ancochea E, et al. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J. Volcanol. Geotherm. Res. 1990;44:231–249. doi: 10.1016/0377-0273(90)90019-C. DOI
Cobolli Sbordoni M, de Matthaeis E, La Rosa G, Mattoccia M, Vigna Taglianti A. Biochemical differentiation and divergence time in the Canarian genus Eutrichopus (Coleoptera, Carabidae) Biogeogr. Asp. Insul. Atti dei Convegni Lincei. 1991 doi: 10.11646/zootaxa.1972.1.2. DOI
Avanzati A, Baratti M, Bernini F. Molecular and morphological differentiation between steganacarid mites (Acari: Oribatida) from the Canary Islands. Biol. J. Linn. Soc. 1994;52:325–340. doi: 10.1111/j.1095-8312.1994.tb00995.x. DOI
del Arco Aguilar MJ, González-González R, Garzón-Machado V, Pizarro-Hernández B. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers. Conserv. 2010;19:3089–3140. doi: 10.1007/s10531-010-9881-2. DOI
Parsons JJ. Human influences on the pine and laurel forests of the Canary Islands. Geogr. Rev. 1981;71:253–271. doi: 10.2307/214699. DOI
Guillou H. Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet. Sci. Lett. 2004;222:599–614. doi: 10.1016/j.epsl.2004.03.012. DOI
Sikes DS. Carrion beetles (Coleoptera: Silphidae) In: Capinera JL, editor. Encyclopedia of Entomology. Springer; 2008. pp. 749–758.
Pérez JJ, García BR. Heterotemna Britoi n. sp. de Silphidae (Coleoptera) de La Palma (Islas Canarias) Anu. Estud. Atlánticos. 1995;1:39–57.
Ikeda H, Kagaya T, Kubota K, Abe T. Evolutionary relationships among food habit, loss of flight, and reproductive traits: Life-history evolution in the Silphinae (Coleoptera: Silphidae) Evolution (N. Y.) 2008;62:2065–2079. PubMed
Newton AF. StaphBase: Staphyliniformia world catalog database (version, Nov 2018) In: Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, van Nieukerken EJ, Penev L, editors. Species 2000 & ITIS Catalogue of Life. University of Reading; 2020.
Machado A. Some additions and corrections to the Coleoptera fauna of the Canary Islands. Graellsia. 2014;70:e005. doi: 10.3989/graellsia.2014.v70.106. DOI
Dobler S, Müller JK. Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: Phylogeny of carrion beetles (Coleoptera, Silphidae) Mol. Phylogenet. Evol. 2000;15:390–402. doi: 10.1006/mpev.1999.0765. PubMed DOI
King JE, Riegler M, Thomas RG, Spooner-Hart RN. Phylogenetic placement of Australian carrion beetles (Coleoptera: Silphidae) Austral Entomol. 2015;54:366–375. doi: 10.1111/aen.12138. DOI
Valcárcel JP, París M. Colección del Museo Nacional de Ciencias Naturales de Madrid. Arq. Entomol. 2015;14:95–104.
Valcárcel J, Prieto Piloña F, Rey-Daluz F. Catálogo de los Silphidae y Agyrtidae de la Península Ibérica e Islas Baleares. Boletín la Soc. Entomológica Aragon. 2002;30:1–32.
Newton AFJ. Silphidae (Staphylinoidea) In: Stehr FW, editor. Immature Insects. Dubuque, IA, USA: Kendall/Hunt; 1991. pp. 339–341.
Klausnitzer, B. 19. Familie: Silphidae. pp. 39–65. In Die Larven der Käfer Mitteleuropas. 4. Band, Polyphaga, Teil 3, sowie Ergänzungen zum 1. bis 3. Band (ed. Klausnitzer, B.) 370. (Goecke & Evers, 1997).
Midgley JM, Villet MH. Metrological framework for selecting morphological characters to identify species and estimate developmental maturity of forensically significant insect specimens. Forensic Sci. Res. 2020 doi: 10.1080/20961790.2020.1794347. PubMed DOI PMC
Frątczak K, Matuszewski S. Classification of forensically relevant larvae according to instar in a closely related species of carrion beetles (Coleoptera: Silphidae: Silphinae) Forensic Sci. Med. Pathol. 2016;12:193–197. doi: 10.1007/s12024-016-9774-0. PubMed DOI PMC
Jakubec P, Novák M, Qubaiová J, Šuláková H, Růžička J. Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae) Int. J. Legal Med. 2019;133:1549–1565. doi: 10.1007/s00414-019-02040-1. PubMed DOI
Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J. Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae) Int. J. Legal Med. 2018;132:939–954. doi: 10.1007/s00414-017-1764-6. PubMed DOI
Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. 1999;41:95–98.
Lawrence J, Ślipiński A. Australian Beetles Morphology, Classification and Keys. CSIRO Publishing; 2013.
Dorsey CK. A comparative study of the larvae of six species of Silpha1 (Coleoptera, Silphidae) Ann. Entomol. Soc. Am. 1940;33:120–139. doi: 10.1093/aesa/33.1.120. DOI
Anderson R. Burying beetle larvae: Nearctic nicrophorus and oriental Ptomascopus morio (Silphidae) Syst. Entomol. 1982;7:249–264. doi: 10.1111/j.1365-3113.1982.tb00443.x. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.
Lüdecke D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3:772. doi: 10.21105/joss.00772. DOI
Simon C, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994;87:651–701. doi: 10.1093/aesa/87.6.651. DOI
Hosoya T, Araya K. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zool. Sci. 2005;22:1305–1318. doi: 10.2108/zsj.22.1305. PubMed DOI
Hosoya T, Honda M, Araya K. Genetic variations of 16S rRNA gene observed in Ceruchus lignarius and Dorcus rectus rectus (Coleoptera: Lucanidae) Entomol. Sci. 2001 doi: 10.2108/zsj.22.1305. DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucl. Acids Res. 2015;43:W7–W14. doi: 10.1093/nar/gkv318. PubMed DOI PMC
Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10, Version 4.0b10 edn, Version 4 (2002).
Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (1973).
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC