Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education, Youth and Sports of the Czech Republic through the European Regional Development Fund-Project 'Plants as a tool for sustainable global development
N/A
Foundation for Arable Research, new Zealand
PubMed
34834672
PubMed Central
PMC8618831
DOI
10.3390/plants10112309
PII: plants10112309
Knihovny.cz E-zdroje
- Klíčová slova
- CKX, CPPU, INCYDE, IPT, TD-K, barley, cytokinin, cytokinin oxidase/dehydrogenase, isopentenyl transferase, thidiazuron, wheat, yield,
- Publikační typ
- časopisecké články MeSH
Using plant growth regulators to alter cytokinin homeostasis with the aim of enhancing endogenous cytokinin levels has been proposed as a strategy to increase yields in wheat and barley. The plant growth regulators INCYDE and CPPU inhibit the cytokinin degrading enzyme cytokinin oxidase/dehydrogenase (CKX), while TD-K inhibits the process of senescence. We report that the application of these plant growth regulators in wheat and barley field trials failed to enhance yields, or change the components of yields. Analyses of the endogenous cytokinin content showed a high concentration of trans-zeatin (tZ) in both wheat and barley grains at four days after anthesis, and statistically significant, but probably biologically insignificant, increases in cisZ-O-glucoside, along with small decreases in cZ riboside (cZR), dihydro Z (DHZ), and DHZR and DHZOG cytokinins, following INCYDE application to barley at anthesis. We discuss possible reasons for the lack of efficacy of the three plant growth regulators under field conditions and comment on future approaches to manipulating yield in the light of the strong homeostatic mechanisms controlling endogenous cytokinin levels.
School of Biological Sciences University of Canterbury Christchurch 8140 New Zealand
School of Life Sciences Yantai University Yantai 264005 China
Zobrazit více v PubMed
Baldos U.L.C., Hertel T.W. Global food security in 2050: The role of agricultural productivity and climate change. Aust. J. Agric. Econ. 2014;58:554–570. doi: 10.1111/1467-8489.12048. DOI
Schmidhuber J., Tubiello F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA. 2007;104:19703–19708. doi: 10.1073/pnas.0701976104. PubMed DOI PMC
Nellemann C., MacDevette M., Manders T., Eickhout B., Svihus B., Prins A.G., Kaltenborn B.P. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises: A UNEP Rapid Response Assessment. UNEP/Earthprint; Stevenage, UK: 2009.
Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y., Xu J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants. 2019;8:34. doi: 10.3390/plants8020034. PubMed DOI PMC
USDA Foreign Agricultural Service . Grain: World Markets and Trade. USDA Foreign Agricultural Service; Washington, DC, USA: 2021.
Langer R.H.M., Prasad P.C., Laude H.M. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.) Ann. Bot. 1973;37:565–571. doi: 10.1093/oxfordjournals.aob.a084721. DOI
Darwinkel A. Ear development and formation of grain yield in winter wheat. Neth. J. Agric. Sci. 1980;28:156–163. doi: 10.18174/njas.v28i3.17029. DOI
Harrison M.A., Kaufman P.B. Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.) Plant Physiol. 1980;66:1123–1127. doi: 10.1104/pp.66.6.1123. PubMed DOI PMC
Chen L., Zhao J., Song J., Jameson P.E. Cytokinin dehydrogenase: A genetic target for yield improvement in wheat. Plant Biotechnol. J. 2020;18:614–630. doi: 10.1111/pbi.13305. PubMed DOI PMC
Van Daele I., Gonzalez N., Vercauteren I., de Smet L., Inzé D., Roldán-Ruiz I., Vuylsteke M. A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant Biotechnol. J. 2012;10:488–500. doi: 10.1111/j.1467-7652.2012.00687.x. PubMed DOI
Guo T., Chen K., Dong N.-Q., Shi C.-L., Ye W.-W., Gao J.-P., Shan J.-X., Lin H.-X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell. 2018;30:871–888. doi: 10.1105/tpc.17.00959. PubMed DOI PMC
Holubová K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018;9:1676. doi: 10.3389/fpls.2018.01676. PubMed DOI PMC
Jabłoński B., Ogonowska H., Szala K., Bajguz A., Orczyk W., Nadolska-Orczyk A. Silencing of TaCKX1 mediates expression of other TaCKX genes to increase yield parameters in wheat. Int. J. Mol. Sci. 2020;21:4809. doi: 10.3390/ijms21134809. PubMed DOI PMC
Jabłoński B., Szala K., Przyborowski M., Bajguz A., Chmur M., Gasparis S., Orczyk W., Nadolska-Orczyk A. TaCKX2.2 genes coordinate expression of other TaCKX family members, regulate phytohormone content and yield-related traits of wheat. Int. J. Mol. Sci. 2021;22:4142. doi: 10.3390/ijms22084142. PubMed DOI PMC
Hendriks P.W., Kirkegaard J.A., Lilley J.M., Gregory P.J., Rebetzke G.J. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J. Exp. Bot. 2016;67:327–340. doi: 10.1093/jxb/erv457. PubMed DOI PMC
Kebrom T.H., Chandler P.M., Swain S.M., King R.W., Richards R.A., Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 2012;160:308–318. doi: 10.1104/pp.112.197954. PubMed DOI PMC
Werner T., Motyka V., Strnad M., Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15:2532–2550. doi: 10.1105/tpc.014928. PubMed DOI PMC
Brenner W.G., Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 2012;12:112. doi: 10.1186/1471-2229-12-112. PubMed DOI PMC
Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
D’Aloia M., Bonhomme D., Bouché F., Tamseddak K., Ormenese S., Torti S., Coupland G., Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65:972–979. doi: 10.1111/j.1365-313X.2011.04482.x. PubMed DOI
Takei K., Ueda N., Aoki K., Kuromori T., Hirayama T., Shinozaki K., Yamaya T., Sakakibara H. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol. 2004;45:1053–1062. doi: 10.1093/pcp/pch119. PubMed DOI
Shtratnikova V.Y., Kudryakova N.V., Kudoyarova G.R., Korobova A.V., Akhiyarova G.R., Danilova M.N., Kusnetsov V.V., Kulaeva O.N. Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium. Russ. J. Plant Physiol. 2015;62:741–752. doi: 10.1134/S1021443715060151. DOI
Gu J., Li Z., Mao Y., Struik P.C., Zhang H., Liu L., Wang Z., Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci. 2018;274:320–331. doi: 10.1016/j.plantsci.2018.06.010. PubMed DOI
Gan S., Amasino R.M. Cytokinins in plant senescence: From spray and pray to clone and play. Bioessays. 1996;18:557–565. doi: 10.1002/bies.950180707. DOI
Zwack P.J., Rashotte A.M. Cytokinin inhibition of leaf senescence. Plant Signal. Behav. 2013;8:e24737. doi: 10.4161/psb.24737. PubMed DOI PMC
Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Schwarz I., Scheirlinck M.T., Otto E., Bartrina I., Schmidt R.C., Schmülling T. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape. J. Exp. Bot. 2020;71:7146–7159. doi: 10.1093/jxb/eraa419. PubMed DOI
Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Miransari M., Smith D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014;99:110–121. doi: 10.1016/j.envexpbot.2013.11.005. DOI
Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI
Jameson P.E., Song J. Will cytokinins underpin the second ‘Green Revolution’? J. Exp. Bot. 2020;71:6872–6875. doi: 10.1093/jxb/eraa447. PubMed DOI PMC
Wang Z., Cao W., Dai T., Zhou Q. Effects of exogenous hormones on floret development and grain setting in wheat. Plant Growth Regul. 2001;35:225–231. doi: 10.1023/A:1014442006862. DOI
Gupta N.K., Gupta S., Shukla D.S., Deshmukh P.S. Differential responses of BA injection on yield and specific grain growth in contrasting genotypes of wheat (Triticum aestivum L.) Plant Growth Regul. 2003;40:201–205. doi: 10.1023/A:1025023822806. DOI
Williams R.H., Cartwright P.M. The effect of applications of a synthetic cytokinin on shoot dominance and grain yield in spring barley. Ann. Bot. 1980;46:445–452. doi: 10.1093/oxfordjournals.aob.a085936. DOI
Hosseini S.M., Poustini K., Ahmadi A. Effects of foliar application of BAP on source and sink strength in four six-rowed barley (Hordeum vulgare L.) cultivars. Plant Growth Regul. 2008;54:231–239. doi: 10.1007/s10725-007-9245-4. DOI
Warrier A., Bhardwaj S.N., Pande P.C. Effect of benzyladenine on grain growth in Aestivum wheat. Plant Cell Physiol. 1987;28:735–739. doi: 10.1093/oxfordjournals.pcp.a077353. DOI
Sivakumar T., Srivastava G.C. Effects of benzyl adenine and abscisic acid on grain yield and yield components in Triticale and wheat. J. Agron. Crop. Sci. 2001;186:43–46. doi: 10.1046/j.1439-037x.2001.00450.x. DOI
Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI
Nagel L., Brewster R., Riedell W.E., Reese R.N. Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.) Ann. Bot. 2001;88:27–31. doi: 10.1006/anbo.2001.1423. DOI
Chen L., Zhao J., Song J., Jameson P.E. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant Biotechnol. J. 2021;19:878–896. doi: 10.1111/pbi.13595. PubMed DOI PMC
McGaw B.A., Horgan R. Cytokinin oxidase from Zea mays kernels and Vinca rosea crown-gall tissue. Planta. 1983;159:30–37. doi: 10.1007/BF00998811. PubMed DOI
Galuszka P., Frébort I., Šebela M., Peč P. Degradation of cytokinins by cytokinin oxidases in plants. Plant Growth Regul. 2000;32:315–327. doi: 10.1023/A:1010735329297. DOI
Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Plant science: Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI
Gemrotová M., Kulkarni M.G., Stirk W.A., Strnad M., Van Staden J., Spíchal L. Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul. 2013;71:137–145. doi: 10.1007/s10725-013-9813-8. DOI
Nisler J., Kopečný D., Končitíková R., Zatloukal M., Bazgier V., Berka K., Zalabák D., Briozzo P., Strnad M., Spíchal L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI
Reynolds A.G., Wardle D.A., Zurowski C., Looney N.E. Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. J. Am. Soc. Hortic. Sci. 1992;117:85–89. doi: 10.21273/JASHS.117.1.85. DOI
Nisler J., Zatloukal M., Spíchal L., Koprna R., Doležal K., Strnad M. 1,2,3-thiadiazol-5yl-urea Derivatives, Use Thereof for Regulating Plant Senescence and Preparations Containing These Derivatives. 9,993,002. U.S. Patent. 2018 June 12;
Van Voorthuizen M.J., Nisler J., Song J., Spíchal L., Jameson P.E. Targeting cytokinin homeostasis in rapid cycling Brassica rapa with plant growth regulators INCYDE and TD-K. Plants. 2021;10:39. doi: 10.3390/plants10010039. PubMed DOI PMC
Chatfield J.M., Armstrong D.J. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol. 1986;80:493–499. doi: 10.1104/pp.80.2.493. PubMed DOI PMC
Hare P.D., Van Staden J. Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol. 1994;35:1121–1125. doi: 10.1093/oxfordjournals.pcp.a078704. DOI
Kopečný D., Briozzo P., Popelková H., Šebela M., Končitíková R., Spíchal L., Nisler J., Madzak C., Frébort I., Laloue M., et al. Phenyl-and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie. 2010;92:1052–1062. doi: 10.1016/j.biochi.2010.05.006. PubMed DOI
Yamada H., Suzuki T., Terada K., Takei K., Ishikawa K., Miwa K., Yamashino T., Mizuno T. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 2001;42:1017–1023. doi: 10.1093/pcp/pce127. PubMed DOI
Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI
Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008;16:9268–9275. doi: 10.1016/j.bmc.2008.09.008. PubMed DOI
Mok M.C., Mok D.W.S., Armstrong D.J., Shudo K., Isogai Y., Okamoto T. Cytokinin activity of N-phenyl N’-1,2,3-thiadiazol-5-ylurea (Thidiazuron) Phytochemistry. 1982;21:1509–1511. doi: 10.1016/S0031-9422(82)85007-3. DOI
Ferrante A., Hunter D.A., Hackett W.P., Reid M.S. Thidiazuron—A potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol. Technol. 2002;25:333–338. doi: 10.1016/S0925-5214(01)00195-8. DOI
Malik K.A., Saxena P.K. Regeneration in Phaseolus vulgaris L.: High-frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron. Planta. 1992;186:384–389. doi: 10.1007/BF00195319. PubMed DOI
Singh N.D., Sahoo L., Sarin N.B., Jaiwal P.K. The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp) Plant Sci. 2003;164:341–347. doi: 10.1016/S0168-9452(02)00418-1. DOI
Zhihui S., Tzitzikas M., Raemakers K., Zhengqiang M., Visser R. Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum) Vitr. Cell. Dev. Biol. Plant. 2009;45:776. doi: 10.1007/s11627-009-9212-z. DOI
Guo B., Abbasi B.H., Zeb A., Xu L.L., Wei Y.H. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011;10:8984–9000.
Piao Y.L., Wang H.T., Zhang H.M. Effects of TDZ on grapes quality in cold area. J. Agric. Sci. Yanbian Univ. 2006;4:012.
Suttle J.C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985;78:272–276. doi: 10.1104/pp.78.2.272. PubMed DOI PMC
Hayata Y., Niimi Y., Iwasaki N. Synthetic cytokinin-1-(2chloro4pyridyl)-3-phenylurea (CPPU)-promotes fruit set and induces parthenocarpy in watermelon. J. Am. Soc. Hort. Sci. 1995;120:997–1000. doi: 10.21273/JASHS.120.6.997. DOI
Bilyeu K.D., Cole J.L., Laskey J.G., Riekhof W.R., Esparza T.J., Kramer M.D., Morris R.O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol. 2001;125:378–386. doi: 10.1104/pp.125.1.378. PubMed DOI PMC
Nisler J., Kopečný D., Pěkná Z., Končitíková R., Koprna R., Murvanidze N., Werbrouck S.P.O., Havlíček L., De Diego N., Kopečná M., et al. Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. J. Exp. Bot. 2021;72:355–370. doi: 10.1093/jxb/eraa437. PubMed DOI
Wang L., Piao Y.L., Lv H., Bai H.J., Li M.D. Effect of TDZ on fruiting and fruit growth of Xiaoxiangshui pear of Yanbian [J] J. Agric. Sci. Yanbian Univ. 2009;3:007.
Guo D.P., Zhu Z.J., Hu X.X., Zheng S.J. Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard (Brassica juncea var. tsatsai) Plant Cell Tissue Organ. Cult. 2005;83:123–127. doi: 10.1007/s11240-005-3799-5. DOI
Biasi R., Costa G., Giuliani R., Succi F., Sansavini S. II International Symposium on Kiwifruit. Volume 297. International Society for Horticultural Science; Korbeek-Lo, Belgium: 1991. Effects of CPPU on kiwifruit performance; pp. 367–374.
Flaishman M.A., Shargal A., Shlizerman L., Stern R.A. The synthetic cytokinins CPPU and TDZ prolong the phase of cell division in developing pear (Pyrus communis L.) fruit. Acta Hortic. 2006;671:151–157. doi: 10.17660/ActaHortic.2005.671.18. DOI
Stern R.A., Ben-Arie R., Neria O., Flaishman M. CPPU and BA increase fruit size of ‘Royal Gala’ (Malus domestica) apple in a warm climate. J. Hort. Sci. Biotechnol. 2003;78:297–302. doi: 10.1080/14620316.2003.11511621. DOI
Ferrara G., Mazzeo A., Netti G., Pacucci C., Matarrese A.M.S., Cafagna I., Mastrorilli P., Vezzoso M., Gallo V. Girdling, gibberellic acid, and forchlorfenuron: Effects on yield, quality, and metabolic profile of table grape cv Italia. Am. J. Enol. Vitic. 2014;65:381–387. doi: 10.5344/ajev.2014.13139. DOI
Fukuda N., Oba H., Mizuta D., Yoshida H., Olsen J.E. Timing of blue and red light exposure and CPPU application during the raising of seedlings can control flowering timing of petunia. Acta. Hortic. 2016;1134:171–178. doi: 10.17660/ActaHortic.2016.1134.23. DOI
Jianchang H., Yan X., Chunxiang Z., Hongbin L. Protective effect of CPPU in papaya plant under drought stress. J. Fruit Sci. 2003;3:013.
Yip W.K., Yang S.F. Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol. 1986;80:515–519. doi: 10.1104/pp.80.2.515. PubMed DOI PMC
Zatloukal M., Plihalova L., Klaskova J., Spíchal L., Koprna R., Dolezal K., Strnad M. Substituted 6-Anilino-9-heterocyclylpurine Derivatives for Inhibition of Plant Stress. 10,662,194. U.S. Patent. 2020 May 26;
Aremu A.O., Masondo N.A., Sunmonu T.O., Kulkarni M.G., Zatloukal M., Spichal L., Doležal K., Van Staden J. A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants. Planta. 2014;240:877–889. doi: 10.1007/s00425-014-2126-y. PubMed DOI
Aremu A.O., Stirk W.A., Masondo N.A., Plačková L., Novák O., Pěnčík A., Zatloukal M., Nisler J., Spíchal L., Doležal K., et al. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 2015;238:81–94. doi: 10.1016/j.plantsci.2015.05.018. PubMed DOI
Reusche M., Klásková J., Thole K., Truskina J., Novák O., Janz D., Strnad M., Spíchal L., Lipka V., Teichmann T. Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Am. Phytopath. Soc. 2013;26:850–860. doi: 10.1094/MPMI-12-12-0287-R. PubMed DOI
Koprna R., Humplík J.F., Špíšek Z., Bryksová M., Zatloukal M., Mik V., Novák O., Nisler J., Doležal K. Improvement of tillering and grain yield by application of cytokinin derivatives in wheat and barley. Agronomy. 2021;11:67. doi: 10.3390/agronomy11010067. DOI
Van Voorthuizen M.J. Ph.D. Thesis. University of Canterbury; Christchurch, New Zealand: 2018. Novel plant growth regulator effects on yield, senescence and cytokinin homeostasis in wheat, barley and rapid cycling Brassica rapa.
Zadoks J.C., Chang T.T., Konzak C.F. Konzak: “A decimal code for the growth stages of cereals”. Weed Res. 1974;14:415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x. DOI
Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis response to inhibitor of cytokinin degradation INCYDE: Modulations of cytokinin signaling and plant proteome. Plants. 2020;9:1563. doi: 10.3390/plants9111563. PubMed DOI PMC
Aremu A.O., Bairu M.W., Novák O., Plačková L., Zatloukal M., Doležal K., Finnie J.F., Strnad M., Van Staden J. Physiological responses and endogenous cytokinin profiles of tissue-cultured “Williams” bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments. Planta. 2012;236:1775–1790. doi: 10.1007/s00425-012-1721-z. PubMed DOI
Zhang W.J., Wang J.Q., Huang Z.L., Mi L., Xu K.F., Wu J.J., Fan Y.H., Ma S.Y., Jiang D.G. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00498. PubMed DOI PMC
Erena M.F., Lohraseb I., Munoz-Santa I., Taylor J.D., Emebiri L.C., Collins N.C. The WtmsDW locus on wheat chromosome 2B controls major natural variation for floret sterility responses to heat stress at booting stage. Front. Plant Sci. 2021;12 doi: 10.3389/fpls.2021.635397. PubMed DOI PMC
Jameson P.E., McWha J.A., Wright G.J. Cytokinins and changes in their activity during the development of grains of wheat (Triticum aestivum L.) Zeit. Pflanzenphysiol. 1982;106:27–36. doi: 10.1016/S0044-328X(82)80051-2. DOI
Lenton J.R., Appleford N.E.J. Cytokinins and Early Growth in Wheat. Volume 14. Monograph, British Plant Growth Regulator Group; Wantage, UK: 1986. pp. 99–113.
Banowetz G.M., Ammar K., Chen D.D. Postanthesis temperatures influence cytokinin accumulation and wheat kernel weight. Plant Cell Environ. 1999;22:309–316. doi: 10.1046/j.1365-3040.1999.00411.x. DOI
Hess J.R., Carman J.G., Banowetz G.M. Hormones in wheat kernels during embryony. J. Plant Physiol. 2002;159:379–386. doi: 10.1078/0176-1617-00718. DOI
Nguyen H.N., Perry L., Kisiala A., Olechowski H., Emery R.N. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.) Planta. 2020;252:1–16. doi: 10.1007/s00425-020-03483-2. PubMed DOI
Faix B., Radchuk V., Nerlich A., Hümmer C., Radchuk R., Emery R.J.N., Keller H., Götz K.-P., Weschke W., Geigenberger P., et al. Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C: N metabolism mediated by an overlapping metabolic-hormonal control. Plant J. 2012;69:1077–1093. doi: 10.1111/j.1365-313X.2011.04857.x. PubMed DOI
Powell A.F., Paleczny A.R., Olechowski H., Emery R.N. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem. 2013;64:33–40. doi: 10.1016/j.plaphy.2012.12.010. PubMed DOI
Motyka V., Faiss M., Strnad M., Kamínek M., Schmulling T. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol. 1996;112:1035–1043. doi: 10.1104/pp.112.3.1035. PubMed DOI PMC
Motyka V., Vaňková R., Čapková V., Petrášek J., Kamínek M., Schmülling T. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant. 2003;117:11–21. doi: 10.1034/j.1399-3054.2003.1170102.x. DOI
Brugière N., Jiao S., Hantke S., Zinselmeier C., Roessler J.A., Niu X., Jones R.J., Habben J.E. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol. 2003;132:1228–1240. doi: 10.1104/pp.102.017707. PubMed DOI PMC
Blagoeva E., Dobrev P.I., Malbeck J., Motyka V., Gaudinová A., Vaňková R. Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul. 2004;44:15–23. doi: 10.1007/s10725-004-1934-7. DOI
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2008;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI
Vyroubalová Š., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., Ohnoutková L., Frébort I., Galuszka P. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 2009;151:433–447. doi: 10.1104/pp.109.142489. PubMed DOI PMC
Gasparis S., Przyborowski M., Kała M., Nadolska-Orczyk A. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-Guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells. 2019;8:782. doi: 10.3390/cells8080782. PubMed DOI PMC
Zhao J., Bai W., Zeng Q., Song S., Zhang M., Li X., Hou L., Xiao Y., Luo M., Li D., et al. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Mol. Breed. 2015;35:60. doi: 10.1007/s11032-015-0232-6. PubMed DOI PMC
Li Y., Song G., Gao J., Zhang S., Zhang R., Li W., Chen M., Liu M., Xia X., Risacher T., et al. Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat. Hereditas. 2018;155:1–8. doi: 10.1186/s41065-018-0071-7. PubMed DOI PMC
Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 2010;61:1839–1851. doi: 10.1093/jxb/erq052. PubMed DOI
Zalewski W., Gasparis S., Boczkowska M., Rajchel I.K., Kała M., Orczyk W., Nadolska-Orczyk A. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PLoS ONE. 2014;9:e115729. doi: 10.1371/journal.pone.0115729. PubMed DOI PMC
Yeh S.Y., Chen H.W., Ng C.Y., Lin C.Y., Tseng T.H., Li W.H., Ku M.S. Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice. 2015;8:36. doi: 10.1186/s12284-015-0070-5. PubMed DOI PMC
Uauy C., Wulff B.B., Dubcovsky J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 2017;51:435–454. doi: 10.1146/annurev-genet-120116-024533. PubMed DOI
Gil J., Andrade-Martínez J.S., Duitama J. Accurate, efficient and user-friendly mutation calling and sample identification for TILLING experiments. Front. Genet. 2021;12:624513. doi: 10.3389/fgene.2021.624513. PubMed DOI PMC
Lassoued R., Phillips P.W., Macall D.M., Hesseln H., Smyth S.J. Expert opinions on the regulation of plant genome editing. Plant Biotechnol. J. 2021;19:1104–1109. doi: 10.1111/pbi.13597. PubMed DOI PMC
Wheat Tilling. [(accessed on 25 October 2021)]. Available online: https://wheat-tilling.com/
Krasileva K.V., Vasquez-Gross H.A., Howell T., Bailey P., Paraiso F., Clissold L., Dubcovsky J. Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA. 2017;114:E913–E921. doi: 10.1073/pnas.1619268114. PubMed DOI PMC
Song J., Jiang L., Jameson P.E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 2012;12:78. doi: 10.1186/1471-2229-12-78. PubMed DOI PMC
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC