Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35095968
PubMed Central
PMC8792765
DOI
10.3389/fpls.2021.797373
Knihovny.cz E-zdroje
- Klíčová slova
- LHCII, carotenoid, energy-dissipation, non-photochemical quenching (NPQ), photosystem (PSII), transient absorption,
- Publikační typ
- časopisecké články MeSH
Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S 1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S 1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S 1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S 1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S 1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.
Department of Chemical Engineering Cyprus University of Technology Limassol Cyprus
Department of Physics Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Digital Environment Research Institute Queen Mary University of London London United Kingdom
Zobrazit více v PubMed
Ahn T. K., Avenson T. J., Ballottari M., Cheng Y.-C., Niyogi K. K., Bassi R., et al. . (2008). Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797. 10.1126/science.1154800 PubMed DOI
Andreussi O., Knecht S., Marian C. M., Kongsted J., Mennucci B. (1993). Carotenoids and light-harvesting: From dft/mrci to the tamm-dancoff approximation. J. Chem. Theory Comput. 11, 655–666. 10.1021/ct5011246 PubMed DOI
Aro E. M., Virgin I., Andersson B. (1993). Photoinhibition of photosystem ii. inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143, 113–134. 10.1016/0005-2728(93)90134-2 PubMed DOI
Artes Vivancos J. M., van Stokkum I. H. M., Saccon F., Hontani Y., Kloz M., Ruban A., et al. . (2020). Unraveling the excited-state dynamics and light-harvesting functions of xanthophylls in light-harvesting complex ii using femtosecond stimulated raman spectroscopy. J. Am. Chem. Soc. 142, 17346–17355. 10.1021/jacs.0c04619 PubMed DOI PMC
Balevičius V., Jr., Fox K. F., Bricker W. P., Jurinovich S., Prandi I. G., et al. . (2017). Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Sci. Rep. 7, 13956. 10.1038/s41598-017-13720-6 PubMed DOI PMC
Balevičius V., Jr., Lincoln C. N., Viola D., Cerullo G., Hauer J., et al. . (2018). Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach. Photosynth. Res. 135, 55–64. 10.1007/s11120-017-0423-6 PubMed DOI
Balevicius V., Duffy C. D. P. (2020). Excitation quenching in chlorophyll-carotenoid antenna systems: ‘coherent’ or ‘incoherent’. Photosynth. Res. 144, 301–315. 10.1007/s11120-020-00737-8 PubMed DOI PMC
Balevicius V., Wei T., Tommaso D. D., Abramavicius D., Hauer J., Polívka T., et al. . (2019). The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem. Sci. 10, 4792–4804. 10.1039/C9SC00410F PubMed DOI PMC
Belgio E., Duffy C. D. P., Ruban A. V. (2013). Switching light harvesting complex ii into photoprotective state involves the lumen-facing apoprotein loop. Phys. Chem. Chem. Phys. 15, 12253–12261. 10.1039/c3cp51925b PubMed DOI
Bode S., Quentmeier C. C., Liao P.-N., Hafi N., Barros T., Wilk L., et al. . (2009). On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. U.S.A. 106, 12311–12316. 10.1073/pnas.0903536106 PubMed DOI PMC
Chmeliov J., Bricker W. P., Lo C., Jouin E., Valkunas L., Ruban A. V., et al. . (2015). An ‘all pigment’model of excitation quenching in lhcii. Phys. Chem. Chem. Phys. 17, 15857–15867. 10.1039/C5CP01905B PubMed DOI
Christensen R. L., Galinato M. G. I., Chu E. F., Fujii R., Hashimoto H., Frank H. A. (2007). Symmetry control of radiative decay in linear polyenes: low barriers for isomerization in the s1 state of hexadecaheptaene. J. Am. Chem. Soc. 129, 1769–1775. 10.1021/ja0609607 PubMed DOI PMC
Cignoni E., Lapillo M., Cupellini L., Acosta Gutierrez S., Gervasio F. L., Mennucci B. (2021). A different perspective for nonphotochemical quenching in plant antenna complexes. Nat. Commun. 12, 7152. 10.1038/s41467-021-27526-8 PubMed DOI PMC
Cupellini L., Calvani D., Jacquemin D., Mennucci B. (2020). Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nat. Commun. 11, 662. 10.1038/s41467-020-14488-6 PubMed DOI PMC
Daskalakis V. (2018). Protein-protein interactions within photosystem ii under photoprotection: the synergy between cp29 minor antenna, subunit s (psbs) and zeaxanthin at all-atom resolution. Phys. Chem. Chem. Phys. 20, 11843–11855. 10.1039/C8CP01226A PubMed DOI
Daskalakis V., Papadatos S., Kleinekathöfer U. (2019). Fine tuning of the photosystem ii major antenna mobility within the thylakoid membrane of higher plants. Biochim. Biophys. Acta 1861, 183059. 10.1016/j.bbamem.2019.183059 PubMed DOI
Daskalakis V., Papadatos S., Stergiannakos T. (2020). The conformational phase space of the photoprotective switch in the major light harvesting complex II. Chem. Commun. 56, 11215–11218. 10.1039/D0CC04486E PubMed DOI
Duffy C. D. P., Chmeliov J., Macernis M., Sulskus J., Valkunas L., Ruban A. V. (2013). Modeling of fluorescence quenching by lutein in the plant light-harvesting complex lhcii. J. Phys. Chem. B 117, 10974–10986. 10.1021/jp3110997 PubMed DOI
Fox K. F., Balevicius V., Chmeliov J., Valkunas L., Ruban A. V., Duffy C. D. P. (2017). The carotenoid pathway: what is important for excitation quenching in plant antenna complexes? Phys. Chem. Chem. Phys. 19, 22957–22968. 10.1039/C7CP03535G PubMed DOI
Fox K. F., Ünlü C., Balevicius V., Ramdour B. N., Kern C., Pan X., et al. . (2018). A possible molecular basis for photoprotection in the minor antenna proteins of plants. Biochim. Biophys. Acta 1859, 471–481. 10.1016/j.bbabio.2018.03.015 PubMed DOI
Fujii R., Onaka K., Kuki M., Koyama Y., Watanabe Y. (1998). The 2ag- energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chem. Phys. Lett. 288, 847–853. 10.1016/S0009-2614(98)00376-5 DOI
Goral T. K., Johnson M. P., Duffy C. D. P., Brain A. P. R., Ruban A. V., Mullineaux C. W. (2012). Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in arabidopsis. Plant J. 69, 289–301. 10.1111/j.1365-313X.2011.04790.x PubMed DOI
Holleboom C.-P., Walla P. J. (2014). The back and forth of energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting. Photosynth. Res. 119, 215–221. 10.1007/s11120-013-9815-4 PubMed DOI
Holt N. E., Zigmantas D., Valkunas L., Li X. P., Niyogi K. K., Fleming G. R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436. 10.1126/science.1105833 PubMed DOI
Horton P., Ruban A. V., Rees D., Pascal A. A., Noctor G., Young A. J. (1991). Control of the light-harvesting function of chloroplast membranes by aggregation of the lhcii chlorophyll-protein complex. FEBS Lett. 292, 1–4. 10.1016/0014-5793(91)80819-O PubMed DOI
Horton P., Ruban A. V., Wentworth M. (2000). Allosteric regulation of the light harvesting system of photosystem ii. Philos. Trans. R. Soc. B 355, 1361–1370. 10.1098/rstb.2000.0698 PubMed DOI PMC
Ilioaia C., Johnson M. P., Liao P. N., Pascal A. A., van Grondelle R., Walla P. J., et al. . (2011). Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem ii. J. Biol. Chem. 286, 27247–27254. 10.1074/jbc.M111.234617 PubMed DOI PMC
Jahns P., Latowski D., Strzalka K. (2009). Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta 1787, 3–14. 10.1016/j.bbabio.2008.09.013 PubMed DOI
Johnson M. P., Goral T. K., Duffy C. D., Brain A. P., Mullineaux C. W., Ruban A. V. (2011). Photoprotective energy dissipation involves the reorganization of photosystem ii light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell. 23, 1468–1479. 10.1105/tpc.110.081646 PubMed DOI PMC
Johnson M. P., Ruban A. V. (2011). Restoration of rapidly reversible photoprotective energy dissipation in the absence of psbs protein by enhanced δph. J. Biol. Chem. 286, 19973–19981. 10.1074/jbc.M111.237255 PubMed DOI PMC
Khokhlov D., Belov A. (2019). Ab initio model for the chlorophyll-lutein exciton coupling in the lhcii complex. Biophys. Chem. 286, 16–24. 10.1016/j.bpc.2019.01.001 PubMed DOI
Knox R. S., Spring B. Q. (2003). Dipole strengths in the chlorophylls. Photochem. Photobiol. 77, 497–501. 10.1562/0031-8655(2003)077andlt;0497:DSITCandgt;2.0.CO;2 PubMed DOI
Krüger T. P. J., Novoderezhkin V. I., Ilioaia C., van Grondelle R. (2010). Fluorescence spectral dynamics of single lhcii trimers. Biophys. J. 98, 3093–3101. 10.1016/j.bpj.2010.03.028 PubMed DOI PMC
Lapillo M., Cignoni E., Cupellini L., Mennucci B. (2020). The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants. Biochim. Biophys. Acta 1861, 148282. 10.1016/j.bbabio.2020.148282 PubMed DOI
Li X., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., et al. . (2004). Regulation of photosynthetic light harvesting involves intrathylakoid lumen ph sensing by the psbs protein. J. Biol. Chem. 279, 22866–22874. 10.1074/jbc.M402461200 PubMed DOI
Liguori N., Campos S. R. R., Baptista A. M., Croce R. (2019). Molecular anatomy of plant photoprotective switches: The sensitivity of psbs to the environment, residue by residue. J. Phys. Chem. Lett, 10, 1737–1742. 10.1021/acs.jpclett.9b00437 PubMed DOI PMC
Liu C., Zhang Y., Cao D., He Y., Kuang T., Yang C. (2008). Structural and functional analysis of the antiparallel strands in the lumenal loop of the major light-harvesting chlorophyll a/b complex of photosystem ii (lhciib) by site-directed mutagenesis. J. Biol. Chem. 283, 487–495. 10.1074/jbc.M705736200 PubMed DOI
Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., et al. . (2004). Crystal structure of spinach major light-harvesting complex at 2.72 a resolution. Nature 428, 287–292. 10.1038/nature02373 PubMed DOI
Lukeš V., Christensson N., Milota F., Kauffmann H. F., Hauer J. (2011). Electronic ground state conformers of β-carotene and their role in ultrafast spectroscopy. Chem. Phys. Lett. 506, 122–127. 10.1016/j.cplett.2011.02.060 DOI
Ma Y.-Z., Holt N. E., Li X.-P., Niyogi K. K., Fleming G. R. (2003). Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl. Acad. Sci. U.S.A. 100, 4377–4382. 10.1073/pnas.0736959100 PubMed DOI PMC
Madjet M. E., Abdurahman A., Renger T. (2006). Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B 110, 17268–17281. 10.1021/jp0615398 PubMed DOI
Malnoë A., Schultink A., Shahrasbi S., Rumeau D., Havaux M., Niyogia K. K. (2018). The plastid lipocalin lcnp is required for sustained photoprotective energy dissipation in arabidopsis. Plant Cell. 30, 196–208. 10.1105/tpc.17.00536 PubMed DOI PMC
Malý P., Gruber J. M., van Grondelle R., Mancal T. (2016). Single molecule spectroscopy of monomeric LHCII: Experiment and theory. Sci. Rep. 6, 26230. 10.1038/srep26230 PubMed DOI PMC
Mascoli V., Liguori N., Xu P., Roy L. M., van Stokkum I. H. M., Croce R. (2019). Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. Chem 5, 2900–2912. 10.1016/j.chempr.2019.08.002 DOI
Müh F., Madjet M. E.-A., Renger T. (2010). Structure-based identification of energy sinks in plant light-harvesting complex II. J. Phys. Chem. B 114, 13517–13535. 10.1021/jp106323e PubMed DOI
Müller M. G., Lambrev P., Reus M., Wientjes E., Croce R., Holzwarth A. R. (2010). Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chem. Phys. Chem. 11, 1289–1296. 10.1002/cphc.200900852 PubMed DOI
Müller P., Li X.-P., Niyogi K. K. (2001). Non-photochemical quenching. a response to excess light energy. Plant Physiol. 125, 1558–1566. 10.1104/pp.125.4.1558 PubMed DOI PMC
Nicol L., Croce R. (2021). The psbs protein and low ph are necessary and sufficient to induce quenching in the light-harvesting complex of plants lhcii. Sci. Rep. 11, 7415. 10.1038/s41598-021-86975-9 PubMed DOI PMC
Niyogi K. K. (2000). Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455–460. 10.1016/S1369-5266(00)00113-8 PubMed DOI
Novoderezhkin V., Marin A., Grondelle R. v. (2011). Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the redfield-förster picture. Phys. Chem. Chem. Phys. 13, 17093–17103. 10.1039/c1cp21079c PubMed DOI
Novoderezhkin V., Palacios M. A., Amerongen H. V., Grondelle R. V. (2004). Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach. J. Phys. Chem. B 108, 10363–10375. 10.1021/jp0496001 PubMed DOI
Ostroumov E. E., Götze J. P., Reus M., Lambrev P. H., Holzwarth A. R. (2020). Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex ii. Photosynth. Res. 144, 171–193. 10.1007/s11120-020-00745-8 PubMed DOI
Pascal A. A., Liu Z., Broess K., van Oort B., van Amerongen H., Wang C., et al. . (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436, 134–137. 10.1038/nature03795 PubMed DOI
Polívka T., Sundström V. (2004). Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem. Rev. 104, 2021–2072. 10.1021/cr020674n PubMed DOI
Polívka T., Zigmantas D., Sundström V., Formaggio E., Cinque G., Bassi R. (2002). Carotenoid s1 state in a recombinant light-harvesting complex of photosystem ii. Bio Chem. 41, 439–450. 10.1021/bi011589x PubMed DOI
Powles S. B. (1984). Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol. 35, 15–44. 10.1146/annurev.pp.35.060184.000311 DOI
Renger T., Trostmann I., Theiss C., Madjet M. E., Richter M., Paulsen H., et al. . (2007). Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. J. Phys. Chem. B 111, 10487–10501. 10.1021/jp0717241 PubMed DOI
Ruban A. V. (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916. 10.1104/pp.15.01935 PubMed DOI PMC
Ruban A. V., Berera R., Ilioaia C., van Stokkum I. H. M., Kennis J. T. M., Pascal A. A., et al. . (2007). Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578. 10.1038/nature06262 PubMed DOI
Ruban A. V., Horton P. (1999). The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol. 119, 531–542. 10.1104/pp.119.2.531 PubMed DOI PMC
Ruban A. V., Johnson M. P., Duffy C. D. P. (2012). The photoprotective molecular switch in the photosystem ii antenna. Biochim. Biophys. Acta 1817, 167–181. 10.1016/j.bbabio.2011.04.007 PubMed DOI
Ruban A. V., Wilson S. (2020). The mechanism of non-photochemical quenching in plants: localisation and driving forces. Plant Cell Physiol. 62, 1063–1072. 10.1093/pcp/pcaa155 PubMed DOI
Saccon F., Durchan M., Bína D., Duffy C. D., Ruban A. V., Polívka T. (2020). A protein environment-modulated energy dissipation channel in lhcii antenna complex. iScience 23, 101430. 10.1016/j.isci.2020.101430 PubMed DOI PMC
Sato R., Ohta H., Masuda S. (2014). Prediction of respective contribution of linear electron flow and pgr5-dependent cyclic electron flow to non-photochemical quenching induction. Plant Physiol. Bio Chem. 81, 190–196. 10.1016/j.plaphy.2014.03.017 PubMed DOI
Son M., Pinnola A., Bassi R., Schlau-Cohen G. S. (2019). The electronic structure of lutein 2 is optimized for light harvesting in plants. Chem 5, 575–584. 10.1016/j.chempr.2018.12.016 DOI
Son M., Pinnola A., Gordon S. C., Bassi R., Schlau-Cohen G. S. (2020). Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat. Commun. 11, 1295. 10.1038/s41467-020-15074-6 PubMed DOI PMC
Staleva H., Komenda J., Shukla M. K., Šlouf V., Kaňa R., Polívka T., et al. . (2015). Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–291. 10.1038/nchembio.1755 PubMed DOI
Strand D. D., Kramer D. M. (2014). Control of non-photochemical exciton quenching by the proton circuit of photosynthesis, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds. Demmig-Adams B., G. Garab W. A., III, Govindjee U. (Dordrecht: Springer; ), 387–408. 10.1007/978-94-017-9032-1_18 DOI
Tavan P., Schulten K. (1987). Electronic excitations in finite and infinite polyenes. Phys. Rev. B 36, 4337. 10.1103/PhysRevB.36.4337 PubMed DOI
Walla P. J., Linden P. A., Ohta K., Fleming G. R. (2002). Excited-state kinetics of the carotenoid s1 state in lhc ii and two-photon excitation spectra of lutein and β-carotene in solution: efficient car s1-chl electronic energy transfer via hot s1 states? J. Phys. Chem. A 106, 1909–1916. 10.1021/jp011495x DOI
Walla P. J., Yom J., Krueger B., Fleming G. (2000). Two photon excitation spectrum of lhcii and fluorescence up-conversion after one- and two-photon excitation of the carotenoids. J. Phys. Chem. B 104, 4799–4806. 10.1021/jp9943023 DOI
Walters R. G., Ruban A. V., Horton P. (1994). Higher plant light-harvesting complexes lhciia and lhciic are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur. J. Bio Chem. 226, 1063–1069. 10.1111/j.1432-1033.1994.01063.x PubMed DOI
Wei T., Balevicius V., Polívka T., Ruban A. V., Duffy C. D. P. (2019). How carotenoid distortions may determine optical properties: lessons from the orange carotenoid protein. Phys. Chem. Chem. Phys. 21, 23187–23197. 10.1039/C9CP03574E PubMed DOI
Wei X., Su X., Cao P., Liu X., Chang W., Li M., et al. . (2016). Structure of spinach photosystem II-LHCII supercomplex at 3.2 åresolution. Nature 534, 69–74. 10.1038/nature18020 PubMed DOI
Xu P., Tian L., Kloz M., Crocea R. (2015). Molecular insights into zeaxanthin-dependent quenching in higher plants. Sci. Rep. 5, 13679. 10.1038/srep13679 PubMed DOI PMC