A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex

. 2020 Sep 25 ; 23 (9) : 101430. [epub] 20200802

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32818906
Odkazy

PubMed 32818906
PubMed Central PMC7452274
DOI 10.1016/j.isci.2020.101430
PII: S2589-0042(20)30620-9
Knihovny.cz E-zdroje

The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.

Zobrazit více v PubMed

Ahn T.K., Avenson T.J., Ballottari M., Cheng Y.-C., Niyogi K.K., Bassi R., Fleming G.R. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science. 2008;320:794–797. PubMed

Akhtar P., Dorogi M., Pawlak K., Kovács L., Bóta A., Kiss T., Garab G., Lambrev P.H. Pigment interactions in light-harvesting complex II in different molecular environments. J. Biol. Chem. 2015;290:4877–4886. PubMed PMC

Avenson T.J., Tae K.A., Zigmantas D., Niyogi K.K., Li Z., Ballottari M., Bassi R., Fleming G.R. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 2008;283:3550–3558. PubMed

Balevičius V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J. A unified picture of S∗ in carotenoids. J. Phys. Chem. Lett. 2016;7:3347–3352. PubMed PMC

Balevičius V., Duffy C.D.P. Excitation quenching in chlorophyll–carotenoid antenna systems: ‘coherent’ or ‘incoherent’. Photosynth. Res. 2020;144:301–315. PubMed PMC

Balevičius V., Wei T., Di Tommaso D., Abramavicius D., Hauer J., Polívka T., Duffy C.D.P. The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem. Sci. 2019;10:4792–4804. PubMed PMC

Bode S., Quentmeier C.C., Liao P.-N., Hafi N., Barros T., Wilk L., Bittner F., Walla P.J. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. U S A. 2009;106:12311–12316. PubMed PMC

Chmeliov J., Gelzinis A., Franckevičius M., Tutkus M., Saccon F., Ruban A.V., Valkunas L. Aggregation-related nonphotochemical quenching in the photosynthetic membrane. J. Phys. Chem. Lett. 2019;10:7340–7346. PubMed

Chmeliov J., Gelzinis A., Songaila E., Augulis R., Duffy C.D.P., Ruban A.V., Valkunas L. The nature of self-regulation in photosynthetic light-harvesting antenna. Nat. Plants. 2016;2:16045. PubMed

Cupellini L., Calvani D., Jacquemin D., Mennucci B. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nat. Commun. 2020;11:662. PubMed PMC

Dall’Osto L., Cazzaniga S., Bressan M., Paleček D., Žídek K., Niyogi K.K., Fleming G.R., Zigmantas D., Bassi R. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat. Plants. 2017;3:17033. PubMed

Dall’Osto L., Lico C., Alric J., Giuliano G., Havaux M., Bassi R. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol. 2006;6:1–20. PubMed PMC

Daskalakis V., Papadatos S., Kleinekathöfer U. Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants. Biochim. Biophys. Acta Biomembr. 2019;1861:183059. PubMed

Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta Bioenerg. 1990;1020:1–24.

Derks A., Schaven K., Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta Bioenerg. 2015;1847:468–485. PubMed

Di Valentin M., Biasibetti F., Ceola S., Carbonera D. Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy. J. Phys. Chem. B. 2009;113:13071–13078. PubMed

Ehlers F., Scholz M., Oum K., Lenzer T. Excited-state dynamics of 3,3′-dihydroxyisorenieratene and (3R,3′R)-zeaxanthin: observation of vibrationally hot S0 species. Arch. Biochem. Biophys. 2018;646:137–144. PubMed

Fox K.F., Balevičius V., Chmeliov J., Valkunas L., Ruban A.V., Duffy C.D.P. The carotenoid pathway: what is important for excitation quenching in plant antenna complexes? Phys. Chem. Chem. Phys. 2017;19:22957–22968. PubMed

Frank H.A., Cogdell R.J. Carotenoids in photosynthesis. Photochem. Photobiol. 1996;63:257–264. PubMed

Giovagnetti V., Ruban A.V. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem. Soc. Trans. 2018;46:1263–1277. PubMed

Gradinaru C.C., Kennis J.T.M., Papagiannakis E., Van Stokkum I.H.M., Cogdell R.J., Fleming G.R., Niederman R.A., Van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. U S A. 2001;98:2364–2369. PubMed PMC

Gradinaru C.C., van Stokkum I.H.M., Pascal A.A., van Grondelle R., van Amerongen H. Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond Pump−Probe study. J. Phys. Chem. B. 2000;104:9330–9342.

Hauer J., Buckup T., Motzkus M. Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J. Phys. Chem. A. 2007;111:10517–10529. PubMed

Holt N.E., Zigmantas D., Valkunas L., Li X.P., Niyogi K.K., Fleming G.R. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science. 2005;307:433–436. PubMed

Hontani Y., Kloz M., Polívka T., Shukla M.K., Sobotka R., Kennis J.T.M. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2018;9:1788–1792. PubMed PMC

Ilioaia C., Johnson M.P., Horton P., Ruban A.V. Induction of efficient energy dissipation in the isolated light-harvesting complex of photosystem II in the absence of protein aggregation. J. Biol. Chem. 2008;283:29505–29512. PubMed PMC

Ilioaia C., Johnson M.P., Liao P.-N., Pascal A.A., van Grondelle R., Walla P.J., Ruban A.V., Robert B. Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J. Biol. Chem. 2011;286:27247–27254. PubMed PMC

Killian J.A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta. 1998;1376:401–416. PubMed

Krüger T.P.J., Ilioaia C., Johnson M.P., Ruban A.V., Papagiannakis E., Horton P., Van Grondelle R. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys. J. 2012;102:2669–2676. PubMed PMC

Krüger T.P.J., Novoderezhkin V.I., Ilioaia C., Van Grondelle R. Fluorescence spectral dynamics of single LHCII trimers. Biophys. J. 2010;98:3093–3101. PubMed PMC

Liebel M., Schnedermann C., Kukura P. Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene. Phys. Rev. Lett. 2014;112:198302. PubMed

Liguori N., Xu P., van Stokkum I.H.M., van Oort B., Lu Y., Karcher D., Bock R., Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat. Commun. 2017;8:1994. PubMed PMC

Ma Y.Z., Holt N.E., Li X.P., Niyogi K.K., Fleming G.R. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl. Acad. Sci. U S A. 2003;100:4377–4382. PubMed PMC

Mascoli V., Liguori N., Xu P., Roy L.M., van Stokkum I.H.M., Croce R. Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. Chem. 2019;5:2900–2912.

Moya I., Silvestri M., Vallon O., Cinque G., Bassi R. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry. 2001;40:12552–12561. PubMed

Mozzo M., Dall’Osto L., Hienerwadel R., Bassi R., Croce R. Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem. 2008;283:6184–6192. PubMed

Müller M.G., Lambrev P., Reus M., Wientjes E., Croce R., Holzwarth A.R. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem. 2010;11:1289–1296. PubMed

Natali A., Gruber J.M., Dietzel L., Stuart M.C.A., Van Grondelle R., Croce R. Light-harvesting Complexes (LHCs) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. J. Biol. Chem. 2016;291:16730–16739. PubMed PMC

Nicol L., Nawrocki W.J., Croce R. Disentangling the sites of non-photochemical quenching in vascular plants. Nat. Plants. 2019;5:1177–1183. PubMed PMC

Niedzwiedzki D., Koscielecki J.F., Cong H., Sullivan J.O., Gibson G.N., Birge R.R., Frank H.A. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J. Phys. Chem. B. 2007;111:5984–5998. PubMed

Niedzwiedzki D.M., Sullivan J.O., Polívka T., Birge R.R., Frank H.A. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. J. Phys. Chem. B. 2006;110:22872–22885. PubMed

Niedzwiedzki D.M., Tronina T., Liu H., Staleva H., Komenda J., Sobotka R., Blankenship R.E., Polívka T. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. Biochim. Biophys. Acta Bioenerg. 2016;1857:1430–1439. PubMed

Niyogi K.K., Truong T.B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 2013;16:307–314. PubMed

Park S., Fischer A.L., Li Z., Bassi R., Niyogi K.K., Fleming G.R. Snapshot transient absorption spectroscopy of carotenoid radical cations in high-light-acclimating thylakoid membranes. J. Phys. Chem. Lett. 2017;8:5548–5554. PubMed

Park S., Fischer A.L., Steen C.J., Iwai M., Morris J.M., Walla P.J., Niyogi K.K., Fleming G.R. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy. J. Am. Chem. Soc. 2018;140:11965–11973. PubMed

Pascal A.A., Liu Z., Broess K., Van Oort B., Van Amerongen H., Wang C., Horton P., Robert B., Chang W., Ruban A. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005;436:134–137. PubMed

Pawlak K., Paul S., Liu C., Reus M., Yang C., Holzwarth A.R. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth. Res. 2020;144:195–208. PubMed

Pinnola A., Staleva-Musto H., Capaldi S., Ballottari M., Bassi R., Polívka T. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochim. Biophys. Acta Bioenerg. 2016;1857:1870–1878. PubMed

Polívka T., Sundström V. Dark excited states of carotenoids: consensus and controversy. Chem. Phys. Lett. 2009;477:1–11.

Polívka T., Sundström V. Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem. Rev. 2004;104:2021–2071. PubMed

Quemeneur F., Sigurdsson J.K., Renner M., Atzberger P.J., Bassereau P., Lacoste D. Shape matters in protein mobility within membranes. Proc. Natl. Acad. Sci. U S A. 2014;111:5083–5087. PubMed PMC

Ruban A.V., Berera R., Ilioaia C., van Stokkum I.H.M., Kennis J.T.M., Pascal A.A., van Amerongen H., Robert B., Horton P., van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007;450:575–578. PubMed

Ruban A.V., Pascal A.A., Robert B. Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett. 2000;477:181–185. PubMed

Ruban A.V. The mechanism of nonphotochemical quenching: the end of the ongoing debate. Plant Physiol. 2019;181:383–384. PubMed PMC

Rutkauskas D., Chmeliov J., Johnson M., Ruban A., Valkunas L. Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode. Chem. Phys. 2012;404:123–128.

Saccon F., Giovagnetti V., Shukla M.K., Ruban A.V. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. J. Exp. Bot. 2020;71:3626–3637. PubMed PMC

Schaller S., Latowski D., Jemioła-Rzemińska M., Dawood A., Wilhelm C., Strzałka K., Goss R. Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim. Biophys. Acta Bioenerg. 2011;1807:326–335. PubMed

Seiwert D., Witt H., Janshoff A., Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci. Rep. 2017;7:1–10. PubMed PMC

Son M., Pinnola A., Gordon S.C., Bassi R., Schlau-Cohen G.S. Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat. Commun. 2020;11:1295. PubMed PMC

Staleva H., Komenda J., Shukla M.K., Šlouf V., Kaňa R., Polívka T., Sobotka R. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 2015;11:287–291. PubMed

Tietz S., Leuenberger M., Höhner R., Olson A.H., Fleming G.R., Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J. Biol. Chem. 2020;295:1857–1866. PubMed PMC

Townsend A.J., Saccon F., Giovagnetti V., Wilson S., Ungerer P., Ruban A.V. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Biochim. Biophys. Acta Bioenerg. 2018;1859:666–675. PubMed

van Oort B., Roy L.M., Xu P., Lu Y., Karcher D., Bock R., Croce R. Revisiting the role of xanthophylls in nonphotochemical quenching. J. Phys. Chem. Lett. 2018;9:346–352. PubMed

van Oort B., van Hoek A., Ruban A.V., van Amerongen H. Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J. Phys. Chem. B. 2007;111:7631–7637. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace