Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
33361324
PubMed Central
PMC7762795
DOI
10.1128/msystems.01044-20
PII: 5/6/e01044-20
Knihovny.cz E-zdroje
- Klíčová slova
- Sphingomonadaceae, aerobic anoxygenic phototrophic bacteria, bacteriochlorophyll a, gene expression, photosynthesis gene cluster, rhodopsin,
- Publikační typ
- časopisecké články MeSH
Photoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.
Center Algatech Institute of Microbiology of the Czech Academy of Science Třeboň Czechia
Department of Environmental Science Aarhus University Aarhus Denmark
Faculty of Science University of South Bohemia České Budějovice Czechia
Institute of Parasitology Biology Center of the Czech Academy of Sciences České Budějovice Czechia
Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures Braunschweig Germany
Research Group Genome Analytics Helmholtz Centre for Infection Research Braunschweig Germany
Research Group Microbial Communication Technical University of Braunschweig Braunschweig Germany
Zobrazit více v PubMed
Falkowski PG, Raven JA. 2007. Aquatic photosynthesis, p 1–43. Princeton University Press, Princeton, NJ.
Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411:786–789. doi:10.1038/35081051. PubMed DOI
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707. PubMed DOI
Campbell BJ, Waidner LA, Cottrell MT, Kirchman DL. 2008. Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ Microbiol 10:99–109. doi:10.1111/j.1462-2920.2007.01436.x. PubMed DOI
Gómez-Consarnau L, Raven JA, Levine NM, Cutter LS, Wang D, Seegers B, Arístegui J, Fuhrman JA, Gasol JM, Sañudo-Wilhelmy SA. 2019. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci Adv 5:eaaw8855. doi:10.1126/sciadv.aaw8855. PubMed DOI PMC
Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel K-P, Labrenz M, Jürgens K, Barkay T, Stomp M, Huisman J, Beja O. 2008. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J 2:656–662. doi:10.1038/ismej.2008.27. PubMed DOI
Mašín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996. doi:10.1111/j.1462-2920.2008.01615.x. PubMed DOI
Yurkov V, Csotonyi JT. 2009. New light on aerobic anoxygenic phototrophs, p 31–55. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT (ed), The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28 Springer, Dordrecht, The Netherlands.
Hauruseu D, Koblížek M. 2012. The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419. doi:10.1128/AEM.01747-12. PubMed DOI PMC
Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M. 2018. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environ Microbiol 20:724–733. doi:10.1111/1462-2920.14003. PubMed DOI
Ferrera I, Sarmento H, Priscu JC, Chiuchiolo A, González JM, Grossart HP. 2017. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front Microbiol 8:175. doi:10.3389/fmicb.2017.00175. PubMed DOI PMC
Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev 80:929–954. doi:10.1128/MMBR.00003-16. PubMed DOI PMC
Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK. 2005. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064. doi:10.1126/science.1118046. PubMed DOI PMC
Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565. doi:10.1073/pnas.0807162105. PubMed DOI PMC
Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85. doi:10.1038/nature04032. PubMed DOI
Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, Pedrós-Alió C, Pinhassi J. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213. doi:10.1038/nature05381. PubMed DOI
Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J. 2010. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358. doi:10.1371/journal.pbio.1000358. PubMed DOI PMC
Gómez-Consarnau L, González JM, Riedel T, Jaenicke S, Wagner-Döbler I, Sañudo-Wilhelmy SA, Fuhrman JA. 2016. Proteorhodopsin light-enhanced growth linked to vitamin-B 1 acquisition in marine Flavobacteria. ISME J 10:1102–1112. doi:10.1038/ismej.2015.196. PubMed DOI PMC
Kang I, Oh HM, Lim SI, Ferriera S, Giovannoni SJ, Cho JC. 2010. Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn (II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192:4798–4799. doi:10.1128/JB.00761-10. PubMed DOI PMC
Tank M, Thiel V, Ward DM, Bryant DA. 2017. A panoply of phototrophs: an overview of the thermophilic chlorophototrophs of the microbial mats of alkaline siliceous hot springs in Yellowstone National Park, WY, USA, p 87–137. In Hallenbeck P. (ed), Modern topics in the phototrophic prokaryotes. Springer, Cham, Switzerland.
Thiel V, Hügler M, Ward DM, Bryant DA. 2017. The dark side of the mushroom spring microbial mat: life in the shadow of chlorophototrophs. II. Metabolic functions of abundant community members predicted from metagenomic analyses. Front Microbiol 8:943. doi:10.3389/fmicb.2017.00943. PubMed DOI PMC
Jung KH, Trivedi VD, Spudich JL. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522. doi:10.1046/j.1365-2958.2003.03395.x. PubMed DOI
Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. 2004. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–1393. doi:10.1126/science.1103943. PubMed DOI PMC
Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL. 2005. Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J Biol Chem 280:14663–14668. doi:10.1074/jbc.M501416200. PubMed DOI
Choi AR, Kim SY, Yoon SR, Bae KH, Jung KH. 2007. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. J Microbiol Biotechnol 17:138–145. PubMed
Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K, Yabuuchi E. 2002. Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087. doi:10.1099/00207713-52-6-2081. PubMed DOI
Asker D, Beppu T, Ueda K. 2007. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57:1435–1441. doi:10.1099/ijs.0.64828-0. PubMed DOI
Huang HD, Wang W, Ma T, Li GQ, Liang FL, Liu RL. 2009. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:719–723. doi:10.1099/ijs.0.000257-0. PubMed DOI
Shin SC, Ahn DH, Lee JK, Kim SJ, Hong SG, Kim EH, Park H. 2012. Genome sequence of Sphingomonas sp. strain PAMC 26605, isolated from arctic lichen (Ochrolechia sp.). J Bacteriol 194:1607. doi:10.1128/JB.00004-12. PubMed DOI PMC
Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M. 2013. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol 79:6439–6446. doi:10.1128/AEM.01526-13. PubMed DOI PMC
Manandhar P, Zhang G, Lama A, Liu F, Hu Y. 2017. Sphingomonas montana sp. nov., isolated from a soil sample from the Tanggula Mountain in the Qinghai Tibetan Plateau. Antonie Van Leeuwenhoek 110:1659–1668. doi:10.1007/s10482-017-0915-6. PubMed DOI
Salka I, Srivastava A, Allgaier M, Grossart HP. 2014. The draft genome sequence of Sphingomonas sp. strain FukuSWIS1, obtained from acidic Lake Grosse Fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc 2:e01183-14. doi:10.1128/genomeA.01183-14. PubMed DOI PMC
Tahon G, Willems A. 2017. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 40:357–369. doi:10.1016/j.syapm.2017.05.007. PubMed DOI
Lee H, Shin SC, Lee J, Kim SJ, Kim B-K, Hong SG, Kim EH, Park H. 2012. Genome sequence of Sphingomonas sp. strain PAMC 26621, an arctic-lichen-associated bacterium isolated from a Cetraria sp. J Bacteriol 194:3030. doi:10.1128/JB.00395-12. PubMed DOI PMC
Lee J, Shin SC, Kim SJ, Kim B-K, Hong SG, Kim EH, Park H, Lee H. 2012. Draft genome sequence of a Sphingomonas sp., an endosymbiotic bacterium isolated from an arctic lichen Umbilicaria sp. J Bacteriol 194:3010–3011. doi:10.1128/JB.00360-12. PubMed DOI PMC
Cottrell MT, Ras J, Kirchman DL. 2010. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary. ISME J 4:945–954. doi:10.1038/ismej.2010.13. PubMed DOI
Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S. 2013. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol 84:316–331. doi:10.1111/1574-6941.12063. PubMed DOI
Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Garcia-Chaves MC, del Giorgio PA. 2015. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One 10:e0124035. doi:10.1371/journal.pone.0124035. PubMed DOI PMC
Sommaruga R, Augustin G. 2006. Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat Sci 68:129–141. doi:10.1007/s00027-006-0836-3. DOI
Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. 2017. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol 9:1950–1962. doi:10.1093/gbe/evx141. PubMed DOI PMC
Zeng X, Kaplan S. 2001. TspO as a modulator of the repressor/antirepressor (PpsR/AppA) regulatory system in Rhodobacter sphaeroides 2.4.1. J Bacteriol 183:6355–6364. doi:10.1128/JB.183.21.6355-6364.2001. PubMed DOI PMC
Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I. 2011. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J 5:1957–1968. doi:10.1038/ismej.2011.68. PubMed DOI PMC
Fankhauser C. 2001. The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276:11453–11456. doi:10.1074/jbc.R100006200. PubMed DOI
Gomelsky M, Klug G. 2002. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 27:497–500. doi:10.1016/s0968-0004(02)02181-3. PubMed DOI
Dachev M, Bína D, Sobotka R, Moravcová L, Gardian Z, Kaftan D, Šlouf V, Fuciman M, Polívka T, Koblížek M. 2017. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol 15:e2003943. doi:10.1371/journal.pbio.2003943. PubMed DOI PMC
Wang WW, Sineshchekov OA, Spudich EN, Spudich JL. 2003. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J Biol Chem 278:33985–33991. doi:10.1074/jbc.M305716200. PubMed DOI
Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Béjà O. 2003. Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–1731. doi:10.1093/emboj/cdg183. PubMed DOI PMC
Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R. 2013. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8:e63422. doi:10.1371/journal.pone.0063422. PubMed DOI PMC
Zheng Q, Zhang R, Koblizek M, Boldareva EN, Yurkov V, Yan S, Jiao N. 2011. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6:e25050. doi:10.1371/journal.pone.0025050. PubMed DOI PMC
Sidiq KR, Chow M, Zhao Z, Daniel R. 2019. Alanine metabolism in Bacillus subtilis. bioRxiv doi:10.1101/562850. PubMed DOI
Nishimura K, Shimada H, Ohta H, Masuda T, Shioi Y, Takamiya KI. 1996. Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol 37:153–159. doi:10.1093/oxfordjournals.pcp.a028926. PubMed DOI
Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KV, Hanada S. 2002. Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 68:1665–1673. doi:10.1128/AEM.68.4.1665-1673.2002. PubMed DOI PMC
Soora M, Cypionka H. 2013. Light enhances survival of Dinoroseobacter shibae during long-term starvation. PLoS One 8:e83960. doi:10.1371/journal.pone.0083960. PubMed DOI PMC
Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. doi:10.1146/annurev.micro.112408.134247. PubMed DOI PMC
Fujita M, Mori K, Hara H, Hishiyama S, Kamimura N, Masai E. 2019. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun Biol 2:432. doi:10.1038/s42003-019-0724-8. PubMed DOI PMC
Tang K, Jiao N, Liu K, Zhang Y, Li S. 2012. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS One 7:e41204. doi:10.1371/journal.pone.0041204. PubMed DOI PMC
Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P. 2012. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090. doi:10.1074/jbc.M112.401604. PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800. doi:10.1073/pnas.1400295111. PubMed DOI PMC
Wendeberg A, Pernthaler J, Amann R. 2004. Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. Mol Microb Ecol Manual 3:711–726.
Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M. 2017. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microbiol 84:e02116-17. doi:10.1128/AEM.02116-17. PubMed DOI PMC
Neuenschwander SM, Pernthaler J, Posch T, Salcher MM. 2015. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ Microbiol 17:781–795. doi:10.1111/1462-2920.12520. PubMed DOI
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324. PubMed DOI PMC
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. doi:10.1101/gr.129684.111. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673. PubMed DOI PMC
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454. PubMed DOI
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi:10.1007/BF01734359. PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197. PubMed DOI PMC
Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. doi:10.1093/oxfordjournals.molbev.a040023. PubMed DOI
Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences, p 57–86. In Miura RM. (ed), Some mathematical questions in biology: DNA sequence analysis. Lectures on mathematics in the life sciences, 2nd ed, vol 17 The American Mathematical Society, Providence, RI.
Bína D, Litvín R, Vácha F, Šiffel P. 2006. New multichannel kinetic spectrophotometer–fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356. doi:10.1007/s11120-006-9071-y. PubMed DOI
Saccon F, Durchan M, Bína D, Duffy CDP, Ruban AV, Polívka T. 2020. A protein environment-modulated energy dissipation channel in LHCII antenna complex. iScience 23:101430. doi:10.1016/j.isci.2020.101430. PubMed DOI PMC
Pinto FL, Thapper A, Sontheim W, Lindblad P. 2009. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:79. doi:10.1186/1471-2199-10-79. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general-purpose read summarization program. Bioinformatics 30:923–930. doi:10.1093/bioinformatics/btt656. PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616. PubMed DOI PMC
Achenbach LA, Carey J, Madigan MT. 2001. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67:2922–2926. doi:10.1128/AEM.67.7.2922-2926.2001. PubMed DOI PMC
Yutin N, Suzuki MT, Béjà O. 2005. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71:8958–8962. doi:10.1128/AEM.71.12.8958-8962.2005. PubMed DOI PMC
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262. PubMed DOI
Scheres SH. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530. doi:10.1016/j.jsb.2012.09.006. PubMed DOI PMC
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica
Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5