Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
2021/03/Y/NZ8/00076
National Science Centre, Poland
PubMed
38886127
PubMed Central
PMC11229431
DOI
10.1093/femsec/fiae090
PII: 7695299
Knihovny.cz E-zdroje
- Klíčová slova
- acetate, aerobic anoxygenic phototrophic bacteria, carbon limitation, freshwater lakes, lignin, microbial ecology,
- MeSH
- aerobní bakterie metabolismus růst a vývoj MeSH
- Bacteria metabolismus růst a vývoj genetika MeSH
- ekosystém MeSH
- fototrofní procesy * MeSH
- heterotrofní procesy MeSH
- jezera mikrobiologie MeSH
- světlo MeSH
- uhlík * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík * MeSH
Aerobic anoxygenic phototrophic (AAP) bacteria are an important component of freshwater bacterioplankton. They can support their heterotrophic metabolism with energy from light, enhancing their growth efficiency. Based on results from cultures, it was hypothesized that photoheterotrophy provides an advantage under carbon limitation and facilitates access to recalcitrant or low-energy carbon sources. However, verification of these hypotheses for natural AAP communities has been lacking. Here, we conducted whole community manipulation experiments and compared the growth of AAP bacteria under carbon limited and with recalcitrant or low-energy carbon sources under dark and light (near-infrared light, λ > 800 nm) conditions to elucidate how they profit from photoheterotrophy. We found that AAP bacteria induce photoheterotrophic metabolism under carbon limitation, but they overcompete heterotrophic bacteria when carbon is available. This effect seems to be driven by physiological responses rather than changes at the community level. Interestingly, recalcitrant (lignin) or low-energy (acetate) carbon sources inhibited the growth of AAP bacteria, especially in light. This unexpected observation may have ecosystem-level consequences as lake browning continues. In general, our findings contribute to the understanding of the dynamics of AAP bacteria in pelagic environments.
Zobrazit více v PubMed
Auladell A, Sánchez P, Sánchez O et al. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87. 10.1038/s41396-019-0401-4. PubMed DOI PMC
Bugg TDH, Ahmad M, Hardiman EM et al. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28:1883–96. 10.1039/C1NP00042J. PubMed DOI
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed DOI PMC
Cepáková Z, Hrouzek P, Žišková E et al. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ Microbiol. 2016;18:5063–71. 10.1111/1462-2920.13475. PubMed DOI
Coleman AW. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol Oceanogr. 1980;25:948–51. 10.4319/lo.1980.25.5.0948. DOI
Cottrell MT, Mannino A, Kirchman DL. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microb. 2006;72:557–64. 10.1128/AEM.72.1.557-564.2006. PubMed DOI PMC
Čuperová Z, Holzer E, Salka I et al. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microb. 2013;79:6439–46. 10.1128/aem.01526-13. PubMed DOI PMC
Fauteux L, Cottrell MT, Kirchman DL et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One. 2015;10:e0124035. 10.1371/journal.pone.0124035. PubMed DOI PMC
Fecskeová LK, Piwosz K, Hanusová M et al. Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep. 2019;9:18766. 10.1038/s41598-019-55210-x. PubMed DOI PMC
Fecskeová LK, Piwosz K, Šantić D et al. Lineage-specific growth curves document large differences in response of individual groups of marine bacteria to the top-down and bottom-up controls. Msystems. 2021;6:e00934–00921. 10.1128/mSystems.00934-21. PubMed DOI PMC
Garcia-Chaves MC, Cottrell MT, Kirchman DL et al. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME J. 2016;10:1579–88. 10.1038/ismej.2015.242. PubMed DOI PMC
Gómez-Consarnau L, Raven JA, Levine NM et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci Adv. 2019;5:eaaw8855. 10.1126/sciadv.aaw8855. PubMed DOI PMC
Griffiths RI, Whiteley AS, O'Donnell AG et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microb. 2000;66:5488–91. 10.1128/aem.66.12.5488-5491.2000. PubMed DOI PMC
Hahn MW, Lunsdorf H, Wu QL et al. Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microb. 2003;69:1442–51. 10.1128/aem.69.3.1442-1451.2003. PubMed DOI PMC
Hauruseu D, Koblížek M. Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microb. 2012;78:7414–9. 10.1128/aem.01747-12. PubMed DOI PMC
Kasalický V, Zeng Y, Piwosz K et al. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microb. 2018;84:e02116–02117. 10.1128/aem.02116-17. PubMed DOI PMC
Koblížek M, Dachev M, Bína D et al. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobiol B: Biol. 2020;213:112085. 10.1016/j.jphotobiol.2020.112085. PubMed DOI
Koblížek M, Masin M, Ras J et al. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol. 2007;9:2401–6. 10.1111/j.1462-2920.2007.01354.x. PubMed DOI
Koblížek M, Mlčoušková J, Kolber Z et al. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol. 2010;192:41–9. 10.1007/s00203-009-0529-0. PubMed DOI
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. 2015;39:854–70. 10.1093/femsre/fuv032. PubMed DOI
Kolářová E, Medová H, Piwosz K et al. Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov. Folia Microbiol. 2019;64:705–10. 10.1007/s12223-019-00735-x. PubMed DOI
Kolber ZS, Plumley FG, Lang AS et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–5. 10.1126/science.1059707. PubMed DOI
Kopejtka K, Tomasch J, Zeng Y et al. Simultaneous presence of Bacteriochlorophyll and Xanthorhodopsin genes in a freshwater bacterium. Msystems. 2020;5:e01044–01020. 10.1128/mSystems.01044-20. PubMed DOI PMC
Kopejtka K, Zeng Y, Kaftan D et al. Characterization of the aerobic anoxygenic phototrophic bacterium Sphingomonas sp. AAP5. Microorganisms. 2021;9:768. 10.3390/microorganisms9040768. PubMed DOI PMC
Kritzberg ES, Hasselquist EM, Škerlep M et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio. 2020;49:375–90. 10.1007/s13280-019-01227-5. PubMed DOI PMC
Kuzyk SB, Messner K, Plouffe J et al. Diverse aerobic anoxygenic phototrophs synthesize bacteriochlorophyll in oligotrophic rather than copiotrophic conditions, suggesting ecological niche. Environ Microbiol. 2023;25:2653–65. 10.1111/1462-2920.16482. PubMed DOI
Lew S, Koblížek M, Lew M et al. Seasonal changes of microbial communities in two shallow peat bog lakes. Folia Microbiol. 2015;60:165–75. 10.1007/s12223-014-0352-0. PubMed DOI
Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514. 10.1038/s41467-020-17041-7. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 2011;17:10–2. 10.14806/ej.17.1.200. DOI
Masin M, Cuperova Z, Hojerova E et al. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe. Aquat Microb Ecol. 2012;66:77–86. 10.3354/ame01558. DOI
Masin M, Nedoma J, Pechar L et al. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol. 2008;10:1988–96. 10.1111/j.1462-2920.2008.01615.x. PubMed DOI
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comp Biol. 2014;10:e1003531. 10.1371/journal.pcbi.1003531. PubMed DOI PMC
Meyer-Jacob C, Michelutti N, Paterson AM et al. The browning and re-browning of lakes: divergent lake-water organic carbon trends linked to acid deposition and climate change. Sci Rep. 2019;9:16676. 10.1038/s41598-019-52912-0. PubMed DOI PMC
Nercessian O, Noyes E, Kalyuzhnaya MG et al. Bacterial populations active in metabolism of C-1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microb. 2005;71:6885–99. 10.1128/aem.71.11.6885-6899.2005. PubMed DOI PMC
Okamura K, Mitsumori F, Ito O et al. Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114. J Bacteriol. 1986;168:1142–6. 10.1128/jb.168.3.1142-1146.1986. PubMed DOI PMC
Piwosz K, Kaftan D, Dean J et al. Non-linear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environ Microbiol. 2018a;20:724–33. 10.1111/1462-2920.14003. PubMed DOI
Piwosz K, Całkiewicz J, Gołębiewski M et al. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdańsk, Baltic Sea). Estuar Coast Shelf Sci. 2018b;207:242–9. 10.1016/j.ecss.2018.04.013. DOI
Piwosz K, Villena-Alemany C, Mujakić I. Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. ISME J. 2022;16:1046–54. 10.1038/s41396-021-01142-2. PubMed DOI PMC
Piwosz K, Vrdoljak A, Frenken T et al. Light and primary production shape bacterial activity and community composition of aerobic anoxygenic phototrophic bacteria in a microcosm experiment. mSphere. 2020;5:e00354–00320. 10.1128/mSphere.00354-20. PubMed DOI PMC
Piwosz K. Response of aerobic anoxygenic phototrophic bacteria to carbon limitation. Dataset, PANGAEA, 2024. 10.1594/PANGAEA.967435. PubMed DOI PMC
Ruiz-González C, Garcia-Chaves MC, Ferrera I et al. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Mol Ecol. 2020;29:1267–83. 10.1111/mec.15404. PubMed DOI
Salka I, Srivastava A, Allgaier M et al. The draft genome sequence of Sphingomonas sp. strain FukuSWIS1, obtained from acidic lake Grosse Fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc. 2014;2:e01183–01114. 10.1128/genomeA.01183-14. PubMed DOI PMC
Shabarova T, Salcher MM, Porcal P et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol. 2021;6:479–88. 10.1038/s41564-020-00852-1. PubMed DOI
Shiba T, Shioi Y, Takamiya K-I et al. Distribution and physiology of aerobic bacteria containing Bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microb. 1991;57:295–300. 10.1128/aem.57.1.295-300.1991. PubMed DOI PMC
Shiba T, Simidu U, Taga N. Distribution of aerobic bacteria which contain Bacteriochlorophyll a. Appl Environ Microb. 1979;38:43–5. 10.1128/aem.38.1.43-45.1979. PubMed DOI PMC
Šimek K, Grujčić V, Mukherjee I et al. Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol. 2020;96:fiaa121. 10.1093/femsec/fiaa121. PubMed DOI PMC
Steinberg CEW, Kamara S, Prokhotskaya VY et al. Dissolved humic substances—ecological driving forces from the individual to the ecosystem level?. Freshwat Biol. 2006;51:1189–210. 10.1111/j.1365-2427.2006.01571.x. DOI
The R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. http://www.R-project.org/ (31 March 2024, date last accessed).
Villena-Alemany C, Mujakic I, Fecskeova LK et al. Phenology and ecological role of aerobic anoxygenic phototrophs in fresh waters. Microbiome. 2024;12:65. 10.1186/s40168-024-01786-0. PubMed DOI PMC
Villena-Alemany C, Mujakić I, Porcal P et al. Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake. Environ Microbiol Rep. 2023;15:60–71. 10.1111/1758-2229.13131. PubMed DOI PMC
Vrdoljak Tomaš A, Šantić D, Šolić M et al. Dynamics of aerobic anoxygenic phototrophs along the trophic gradient in the central Adriatic Sea. Deep Sea Res Part II. 2019;164:112–21. 10.1016/j.dsr2.2019.06.001. DOI
Willems A, Busse J, Goor M et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Evol Microbiol. 1989;39:319–33. 10.1099/00207713-39-3-319. DOI
Williamson CE, Overholt EP, Pilla RM et al. Ecological consequences of long-term browning in lakes. Sci Rep. 2015;5:18666. 10.1038/srep18666. PubMed DOI PMC
Yurkov V, Gorlenko VM. Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a. Microbiology. 1990;59:85–9.
Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev. 1998;62:695–724. PubMed PMC
Yurkov VV, Van Gemerden H. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol. 1993;159:84–9. 10.1007/bf00244268. DOI
Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microb. 2005;71:8958–62. 10.1128/aem.71.12.8958-8962.2005. PubMed DOI PMC