Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment

. 2020 Jul 01 ; 5 (4) : . [epub] 20200701

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32611696

Odkazy
PubMed 32611696
PubMed Central PMC7333569
DOI 10.1128/msphere.00354-20
PII: 5/4/e00354-20
Knihovny.cz E-zdroje

Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.

Erratum v

PubMed

Zobrazit více v PubMed

Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD. 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw Biol 62:833–853. doi:10.1111/fwb.12909. DOI

PubMed DOI PMC

Hawkes J, Patriarca C, Sjöberg P, Tranvik L, Bergquist J. 2018. Extreme isomeric complexity of dissolved organic matter found across aquatic environments: extreme isomeric complexity of DOM. Limnol Oceanogr 3:21–30. doi:10.1002/lol2.10064. DOI

Koehler B, Wachenfeldt E, Kothawala D, Tranvik L. 2012. Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophysical Res (Biogeosciences) 117:1024.

Maki K, Kim C, Yoshimizu C, Tayasu I, Miyajima T, Nagata T. 2010. Autochthonous origin of semi-labile dissolved organic carbon in a large monomictic lake (Lake Biwa): carbon stable isotopic evidence. Limnology 11:143–153. doi:10.1007/s10201-009-0299-z. DOI

Toming K, Tuvikene L, Vilbaste S, Agasild H, Viik M, Kisand A, Feldmann T, Martma T, Jones R, Noges T. 2013. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnol Oceanogr 58:1259–1270. doi:10.4319/lo.2013.58.4.1259. DOI

PubMed DOI

Šimek K, Horňák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed’a J. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol 51:249–262. doi:10.3354/ame01193. DOI

Kritzberg ES, Cole JJ, Pace ML, Graneli W, Bade DL. 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake C-13 addition experiments. Limnol Oceanogr 49:588–596. doi:10.4319/lo.2004.49.2.0588. DOI

Kritzberg ES, Cole JJ, Pace MM, Graneli W. 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38:103–111. doi:10.3354/ame038103. DOI

Bertilsson S, Jones JB. 2003. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources, p 3–24. In Findlay SEG, Sinsabaugh RL (ed), Aquatic ecosystems. Academic Press, Burlington, VT.

PubMed DOI PMC

Camarena-Gómez MT, Lipsewers T, Piiparinen J, Eronen-Rasimus E, Perez-Quemaliños D, Hoikkala L, Sobrino C, Spilling K. 2018. Shifts in phytoplankton community structure modify bacterial production, abundance and community composition. Aquat Microb Ecol 81:149–170. doi:10.3354/ame01868. DOI

Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Horňák K, Sed’a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi:10.4319/lo.2014.59.5.1477. DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

Danger M, Leflaive J, Oumarou C, Ten-Hage L, Lacroix G. 2007. Control of phytoplankton-bacterium interactions by stoichiometric constraints. Oikos 116:1079–1086. doi:10.1111/j.2007.0030-1299.15424.x. DOI

Gurung TB, Urabe J, Nakanishi M. 1999. Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat Microb Ecol 17:27–35. doi:10.3354/ame017027. DOI

Mindl B, Sonntag B, Pernthaler J, Vrba J, Psenner R, Posch T. 2005. Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the “phytoplankton-bacterium paradox” in a continuous cultivation system. Aquat Microb Ecol 38:203–213. doi:10.3354/ame038203. DOI

Paver SF, Kent AD. 2017. Direct and context-dependent effects of light, temperature, and phytoplankton shape bacterial community composition. Ecosphere 8:e01948. doi:10.1002/ecs2.1948. DOI

Pope CA, Halvorson HM, Findlay RH, Francoeur SN, Kuehn KA. 2020. Light and temperature mediate algal stimulation of heterotrophic activity on decomposing leaf litter. Freshw Biol doi:10.1111/fwb.13465. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

Grossart H-P. 1999. Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab. Aquat Microb Ecol 19:1–11. doi:10.3354/ame019001. DOI

PubMed DOI PMC

Nedoma J, Porcalová P, Komárková J, Vyhnálek V. 1993. A seasonal study of phosphorus deficiency in a eutrophic reservoir. Freshwater Biol 30:369–376. doi:10.1111/j.1365-2427.1993.tb00821.x. DOI

Znachor P, Zapomělová E, Řeháková K, Nedoma J, Šimek K. 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat Sci 70:77–86. doi:10.1007/s00027-007-7033-x. DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K. 2006. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45:277–289. doi:10.3354/ame045277. DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

Lund JWG, Kipling C, Le Cren ED. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170. doi:10.1007/BF00007865. DOI

Peterson BJ. 1980. Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annu Rev Ecol Syst 11:359–385. doi:10.1146/annurev.es.11.110180.002043. DOI

Hoppe H-G. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. Lewis Publishers, Boca Raton, FL.

Eaton AD, Franson M. 2005. Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC.

Armstrong FAJ, Stearns CR, Strickland J. 1967. The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer and associated equipment. Deep Sea Res Oceanographic Abstr 14:381–389. doi:10.1016/0011-7471(67)90082-4. DOI

Coleman AW. 1980. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol Oceanogr 25:948–951. doi:10.4319/lo.1980.25.5.0948. DOI

Jochem F. 2001. Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry. Aquat Microb Ecol 25:179–194. doi:10.3354/ame025179. DOI

PubMed DOI PMC

Medina-Sánchez JM, Herrera G, Durán C, Villar-Argaiz M, Carrillo P. 2017. Optode use to evaluate microbial planktonic respiration in oligotrophic ecosystems as an indicator of environmental stress. Aquat Sci 79:529–541. doi:10.1007/s00027-016-0515-y. DOI

PubMed DOI PMC

Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213. doi:10.3354/meps051201. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. doi:10.14806/ej.17.1.200. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

Ter Braak CJ, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, NY.

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...