Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30285851
PubMed Central
PMC6169038
DOI
10.1186/s40168-018-0563-8
PII: 10.1186/s40168-018-0563-8
Knihovny.cz E-zdroje
- Klíčová slova
- CARD-FISH, Chloroflexi, Freshwater ecology, Metagenomics,
- MeSH
- Chloroflexi klasifikace genetika izolace a purifikace MeSH
- DNA bakterií genetika MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genom bakteriální genetika MeSH
- jezera mikrobiologie MeSH
- metagenom genetika MeSH
- plankton klasifikace genetika MeSH
- RNA ribozomální 16S genetika MeSH
- salinita MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
BACKGROUND: Representatives of the phylum Chloroflexi, though reportedly highly abundant in the extensive deep water habitats of both marine (SAR202 up to 30% of total prokaryotes) and freshwater (CL500-11 up to 26% of total prokaryotes), remain uncultivated and uncharacterized. There are few metagenomic studies on marine Chloroflexi representatives, while the pelagic freshwater Chloroflexi community is largely unknown except for a single metagenome-assembled genome of CL500-11. RESULTS: Here, we provide the first extensive examination of the community composition of this cosmopolitan phylum in a range of pelagic habitats (176 datasets) and highlight the impact of salinity and depth on their phylogenomic composition. Reconstructed genomes (53 in total) provide a perspective on the phylogeny, metabolism, and distribution of three novel classes and two family-level taxa within the phylum Chloroflexi. We unraveled a remarkable genomic diversity of pelagic freshwater Chloroflexi representatives that thrive not only in the hypolimnion as previously suspected, but also in the epilimnion. Our results suggest that the lake hypolimnion provides a globally stable habitat reflected in lower species diversity among hypolimnion-specific CL500-11 and TK10 clusters in distantly related lakes compared to a higher species diversity of the epilimnion-specific SL56 cluster. Cell volume analyses show that the CL500-11 are among the largest prokaryotic cells in the water column of deep lakes and with a biomass to abundance ratio of two they significantly contribute to the deep lake carbon flow. Metabolic insights indicate participation of JG30-KF-CM66 representatives in the global cobalamin production via cobinamide to cobalamin salvage pathway. CONCLUSIONS: Extending phylogenomic comparisons to brackish and marine habitats suggests salinity as the major influencer of the community composition of the deep-dwelling Chloroflexi in marine (SAR202) and freshwater (CL500-11) habitats as both counterparts thrive in intermediate brackish salinity; however, freshwater habitats harbor the most phylogenetically diverse community of pelagic Chloroflexi representatives that reside both in epi- and hypolimnion.
Zobrazit více v PubMed
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol. 2014;23:6073–6090. doi: 10.1111/mec.12985. PubMed DOI
Neuenschwander Stefan M, Ghai Rohit, Pernthaler Jakob, Salcher Michaela M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. The ISME Journal. 2017;12(1):185–198. doi: 10.1038/ismej.2017.156. PubMed DOI PMC
Salcher MM, Posch T, Pernthaler J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 2013;7:896–907. doi: 10.1038/ismej.2012.162. PubMed DOI PMC
Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 2015;9:2442–2453. doi: 10.1038/ismej.2015.55. PubMed DOI PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One. 2013;8:e58209. doi: 10.1371/journal.pone.0058209. PubMed DOI PMC
Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol. 2017;83:e02266–e02216. doi: 10.1128/AEM.02266-16. PubMed DOI PMC
Salcher MM, Pernthaler J, Posch T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12) ISME J. 2011;5:1242–1252. doi: 10.1038/ismej.2011.8. PubMed DOI PMC
Henson Michael W., Lanclos V. Celeste, Faircloth Brant C., Thrash J. Cameron. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. The ISME Journal. 2018;12(7):1846–1860. doi: 10.1038/s41396-018-0092-2. PubMed DOI PMC
Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 2014;8:2503–2516. doi: 10.1038/ismej.2014.135. PubMed DOI PMC
Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-valera F. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwat er reservoirs. Front Microbiol. 2017;8:2131. PubMed PMC
Okazaki Yusuke, Fujinaga Shohei, Tanaka Atsushi, Kohzu Ayato, Oyagi Hideo, Nakano Shin-ichi. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. The ISME Journal. 2017;11(10):2279–2293. doi: 10.1038/ismej.2017.89. PubMed DOI PMC
Urbach E, Vergin KL, Young L, Morse A, Larson GL, Giovannoni SJ. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr. 2001;46:557–572. doi: 10.4319/lo.2001.46.3.0557. DOI
Urbach E, Vergin KL, Larson GL, Giovannoni SJ. Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia. 2007;574:161–177. doi: 10.1007/s10750-006-0351-5. DOI
Okazaki Y, Hodoki Y, Nakano SI. Seasonal dominance of CL500-11 bacterioplankton (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol. 2013;83:82–92. doi: 10.1111/j.1574-6941.2012.01451.x. PubMed DOI
Okazaki Y, Nakano SI. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) Environ Microbiol Rep. 2016;8:780–788. doi: 10.1111/1758-2229.12439. PubMed DOI
Denef VJ, Mueller RS, Chiang E, Liebig JR, Vanderploeg HA. Chloroflexi CL500-11 populations that predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich dissolved organic matter metabolism and C 1 compound oxidation. Appl Environ Microbiol. 2016;82:1423–1432. doi: 10.1128/AEM.03014-15. PubMed DOI PMC
Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio. 2017;8:e00413–e00417. doi: 10.1128/mBio.00413-17. PubMed DOI PMC
Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA: DNA ratios among freshwater lake bacteria. Front Microbiol. 2016;7:606. PubMed PMC
Tang X, Chao J, Gong Y, Wang Y, Wilhelm SW, Gao G. Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr. 2017;62:1366–1382. doi: 10.1002/lno.10502. DOI
Han M, Gong Y, Zhou C, Zhang J, Wang Z, Ning K. Comparison and interpretation of taxonomical structure of bacterial communities in two types of lakes on Yun-Gui plateau of China. Nat Publ Gr. 2016. 10.1038/srep30616. PubMed PMC
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC
Gernert C, Glockner FO, Krohne G, Hentschel U. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol. 2005;50:206–212. doi: 10.1007/s00248-004-0172-x. PubMed DOI
Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77. doi: 10.1371/journal.pbio.0050077. PubMed DOI PMC
Morris RM, Rappé MS, Urbach E, Connon SA, Rappe MS, Giovannoni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Env Microbiol. 2004;70:2836–2842. doi: 10.1128/AEM.70.5.2836-2842.2004. PubMed DOI PMC
Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 2009;11:2078–2093. doi: 10.1111/j.1462-2920.2009.01929.x. PubMed DOI
Mehrshad Maliheh, Rodriguez-Valera Francisco, Amoozegar Mohammad Ali, López-García Purificación, Ghai Rohit. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. The ISME Journal. 2017;12(3):655–668. doi: 10.1038/s41396-017-0009-5. PubMed DOI PMC
Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci. 2007;104:11436–11440. doi: 10.1073/pnas.0611525104. PubMed DOI PMC
Walsh DA, Lafontaine J, Grossart H-P. On the eco-evolutionary relationships of fresh and salt water bacteria and the role of gene transfer in their adaptation. In: Gophna U, editor. Lateral gene transfer in evolution. New York: Springer New York; 2013. pp. 55–77.
Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–422. doi: 10.1016/j.tim.2009.05.010. PubMed DOI
Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG, Schwientek P, et al. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J. 2016;10:1902–1914. doi: 10.1038/ismej.2015.260. PubMed DOI PMC
Posch T, Köster O, Salcher MM, Pernthaler J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Chang. 2012;2:809–813. doi: 10.1038/nclimate1581. DOI
Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–173. doi: 10.1111/1462-2920.12930. PubMed DOI
Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature. 2008;452:741–744. doi: 10.1038/nature06776. PubMed DOI
Doxey Andrew C, Kurtz Daniel A, Lynch Michael DJ, Sauder Laura A, Neufeld Josh D. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. The ISME Journal. 2014;9(2):461–471. doi: 10.1038/ismej.2014.142. PubMed DOI PMC
Qin Wei, Amin Shady A, Lundeen Rachel A, Heal Katherine R, Martens-Habbena Willm, Turkarslan Serdar, Urakawa Hidetoshi, Costa Kyle C, Hendrickson Erik L, Wang Tony, Beck David AC, Tiquia-Arashiro Sonia M, Taub Fred, Holmes Andrew D, Vajrala Neeraja, Berube Paul M, Lowe Todd M, Moffett James W, Devol Allan H, Baliga Nitin S, Arp Daniel J, Sayavedra-Soto Luis A, Hackett Murray, Armbrust E Virginia, Ingalls Anitra E, Stahl David A. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. The ISME Journal. 2017;12(2):508–519. doi: 10.1038/ismej.2017.186. PubMed DOI PMC
Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B 12 ): synthesis and biological significance. 1996. PubMed
Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:1–7. doi: 10.1128/mBio.00036-12. PubMed DOI PMC
Men Y, Seth EC, Yi S, Allen RH, Taga ME, Alvarez-cohen L. Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia. Appl Environmantal Microbiol. 2014;80:2133–2141. doi: 10.1128/AEM.03477-13. PubMed DOI PMC
Escalante-Semerena JC. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol. 2007;189:4555–4560. doi: 10.1128/JB.00503-07. PubMed DOI PMC
Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One. 2009;4:e4207. doi: 10.1371/journal.pone.0004207. PubMed DOI PMC
Sutcliffe IC. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol. 2011;13:279–282. doi: 10.1111/j.1462-2920.2010.02339.x. PubMed DOI
Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science. 2005;309:2061–2064. doi: 10.1126/science.1118046. PubMed DOI PMC
Balashov SP, Lanyi JK. Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci. 2007;64:2323–2328. doi: 10.1007/s00018-007-7167-y. PubMed DOI PMC
Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP. Functions of carotenoids in Xanthorhodopsin and Archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim Biophys Acta. 2006;1757:1649–1656. doi: 10.1016/j.bbabio.2006.08.012. PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblízek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. PNAS. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC
Simek K, Bobková J, Macek M, Nedoma J, Psenner R. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr. 1995;40:1077–1090. doi: 10.4319/lo.1995.40.6.1077. DOI
Martín-Cuadrado A-B, López-García P, Alba J-C, Moreira D, Monticelli L, Strittmatter A, et al. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One. 2007;2:e914. doi: 10.1371/journal.pone.0000914. PubMed DOI PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Nawrocki E. Structural RNA homology search and alignment using covariance models. ST. Louis: PhD thesis. Washington University; 2009.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–1829. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–1371. doi: 10.1093/nar/gkh293. PubMed DOI PMC
Stamatakis A, Ludwig T, Meier H. RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. Concurr Comput Pract Exp. 2005;17:1705–1723. doi: 10.1002/cpe.954. DOI
Zeder M, Pernthaler J. Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria. Cytom Part A. 2009;75:781–788. doi: 10.1002/cyto.a.20770. PubMed DOI
Posch T, Franzoi J, Prader M, Salcher MM. New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol. 2009;54:113–126. doi: 10.3354/ame01269. DOI
Nurk Sergey, Meleshko Dmitry, Korobeynikov Anton, Pevzner Pavel A. metaSPAdes: a new versatile metagenomic assembler. Genome Research. 2017;27(5):824–834. doi: 10.1101/gr.213959.116. PubMed DOI PMC
Bolger Anthony M., Lohse Marc, Usadel Bjoern. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–1028. PubMed
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. doi: 10.7717/peerj.1165. PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. PubMed DOI PMC
Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–43. doi: 10.1093/nar/29.1.41. PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Aziz RK, Bartels D, A a B, DeJongh M, Disz T, RA E, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res. 2003;31:6633–6639. doi: 10.1093/nar/gkg847. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. doi: 10.1038/ncomms3304. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–1116. doi: 10.1093/oxfordjournals.molbev.a026201. DOI
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005;102:2567–2572. doi: 10.1073/pnas.0409727102. PubMed DOI PMC
Global freshwater distribution of Telonemia protists
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
The Evolutionary Kaleidoscope of Rhodopsins
Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms
Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics