Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi

. 2018 Oct 02 ; 6 (1) : 176. [epub] 20181002

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30285851
Odkazy

PubMed 30285851
PubMed Central PMC6169038
DOI 10.1186/s40168-018-0563-8
PII: 10.1186/s40168-018-0563-8
Knihovny.cz E-zdroje

BACKGROUND: Representatives of the phylum Chloroflexi, though reportedly highly abundant in the extensive deep water habitats of both marine (SAR202 up to 30% of total prokaryotes) and freshwater (CL500-11 up to 26% of total prokaryotes), remain uncultivated and uncharacterized. There are few metagenomic studies on marine Chloroflexi representatives, while the pelagic freshwater Chloroflexi community is largely unknown except for a single metagenome-assembled genome of CL500-11. RESULTS: Here, we provide the first extensive examination of the community composition of this cosmopolitan phylum in a range of pelagic habitats (176 datasets) and highlight the impact of salinity and depth on their phylogenomic composition. Reconstructed genomes (53 in total) provide a perspective on the phylogeny, metabolism, and distribution of three novel classes and two family-level taxa within the phylum Chloroflexi. We unraveled a remarkable genomic diversity of pelagic freshwater Chloroflexi representatives that thrive not only in the hypolimnion as previously suspected, but also in the epilimnion. Our results suggest that the lake hypolimnion provides a globally stable habitat reflected in lower species diversity among hypolimnion-specific CL500-11 and TK10 clusters in distantly related lakes compared to a higher species diversity of the epilimnion-specific SL56 cluster. Cell volume analyses show that the CL500-11 are among the largest prokaryotic cells in the water column of deep lakes and with a biomass to abundance ratio of two they significantly contribute to the deep lake carbon flow. Metabolic insights indicate participation of JG30-KF-CM66 representatives in the global cobalamin production via cobinamide to cobalamin salvage pathway. CONCLUSIONS: Extending phylogenomic comparisons to brackish and marine habitats suggests salinity as the major influencer of the community composition of the deep-dwelling Chloroflexi in marine (SAR202) and freshwater (CL500-11) habitats as both counterparts thrive in intermediate brackish salinity; however, freshwater habitats harbor the most phylogenetically diverse community of pelagic Chloroflexi representatives that reside both in epi- and hypolimnion.

Zobrazit více v PubMed

Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol. 2014;23:6073–6090. doi: 10.1111/mec.12985. PubMed DOI

Neuenschwander Stefan M, Ghai Rohit, Pernthaler Jakob, Salcher Michaela M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. The ISME Journal. 2017;12(1):185–198. doi: 10.1038/ismej.2017.156. PubMed DOI PMC

Salcher MM, Posch T, Pernthaler J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 2013;7:896–907. doi: 10.1038/ismej.2012.162. PubMed DOI PMC

Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 2015;9:2442–2453. doi: 10.1038/ismej.2015.55. PubMed DOI PMC

Kasalický V, Jezbera J, Hahn MW, Šimek K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One. 2013;8:e58209. doi: 10.1371/journal.pone.0058209. PubMed DOI PMC

Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol. 2017;83:e02266–e02216. doi: 10.1128/AEM.02266-16. PubMed DOI PMC

Salcher MM, Pernthaler J, Posch T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12) ISME J. 2011;5:1242–1252. doi: 10.1038/ismej.2011.8. PubMed DOI PMC

Henson Michael W., Lanclos V. Celeste, Faircloth Brant C., Thrash J. Cameron. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. The ISME Journal. 2018;12(7):1846–1860. doi: 10.1038/s41396-018-0092-2. PubMed DOI PMC

Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 2014;8:2503–2516. doi: 10.1038/ismej.2014.135. PubMed DOI PMC

Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-valera F. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwat er reservoirs. Front Microbiol. 2017;8:2131. PubMed PMC

Okazaki Yusuke, Fujinaga Shohei, Tanaka Atsushi, Kohzu Ayato, Oyagi Hideo, Nakano Shin-ichi. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. The ISME Journal. 2017;11(10):2279–2293. doi: 10.1038/ismej.2017.89. PubMed DOI PMC

Urbach E, Vergin KL, Young L, Morse A, Larson GL, Giovannoni SJ. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr. 2001;46:557–572. doi: 10.4319/lo.2001.46.3.0557. DOI

Urbach E, Vergin KL, Larson GL, Giovannoni SJ. Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia. 2007;574:161–177. doi: 10.1007/s10750-006-0351-5. DOI

Okazaki Y, Hodoki Y, Nakano SI. Seasonal dominance of CL500-11 bacterioplankton (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol. 2013;83:82–92. doi: 10.1111/j.1574-6941.2012.01451.x. PubMed DOI

Okazaki Y, Nakano SI. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) Environ Microbiol Rep. 2016;8:780–788. doi: 10.1111/1758-2229.12439. PubMed DOI

Denef VJ, Mueller RS, Chiang E, Liebig JR, Vanderploeg HA. Chloroflexi CL500-11 populations that predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich dissolved organic matter metabolism and C 1 compound oxidation. Appl Environ Microbiol. 2016;82:1423–1432. doi: 10.1128/AEM.03014-15. PubMed DOI PMC

Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio. 2017;8:e00413–e00417. doi: 10.1128/mBio.00413-17. PubMed DOI PMC

Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA: DNA ratios among freshwater lake bacteria. Front Microbiol. 2016;7:606. PubMed PMC

Tang X, Chao J, Gong Y, Wang Y, Wilhelm SW, Gao G. Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr. 2017;62:1366–1382. doi: 10.1002/lno.10502. DOI

Han M, Gong Y, Zhou C, Zhang J, Wang Z, Ning K. Comparison and interpretation of taxonomical structure of bacterial communities in two types of lakes on Yun-Gui plateau of China. Nat Publ Gr. 2016. 10.1038/srep30616. PubMed PMC

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC

Gernert C, Glockner FO, Krohne G, Hentschel U. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol. 2005;50:206–212. doi: 10.1007/s00248-004-0172-x. PubMed DOI

Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77. doi: 10.1371/journal.pbio.0050077. PubMed DOI PMC

Morris RM, Rappé MS, Urbach E, Connon SA, Rappe MS, Giovannoni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Env Microbiol. 2004;70:2836–2842. doi: 10.1128/AEM.70.5.2836-2842.2004. PubMed DOI PMC

Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 2009;11:2078–2093. doi: 10.1111/j.1462-2920.2009.01929.x. PubMed DOI

Mehrshad Maliheh, Rodriguez-Valera Francisco, Amoozegar Mohammad Ali, López-García Purificación, Ghai Rohit. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. The ISME Journal. 2017;12(3):655–668. doi: 10.1038/s41396-017-0009-5. PubMed DOI PMC

Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci. 2007;104:11436–11440. doi: 10.1073/pnas.0611525104. PubMed DOI PMC

Walsh DA, Lafontaine J, Grossart H-P. On the eco-evolutionary relationships of fresh and salt water bacteria and the role of gene transfer in their adaptation. In: Gophna U, editor. Lateral gene transfer in evolution. New York: Springer New York; 2013. pp. 55–77.

Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–422. doi: 10.1016/j.tim.2009.05.010. PubMed DOI

Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG, Schwientek P, et al. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J. 2016;10:1902–1914. doi: 10.1038/ismej.2015.260. PubMed DOI PMC

Posch T, Köster O, Salcher MM, Pernthaler J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Chang. 2012;2:809–813. doi: 10.1038/nclimate1581. DOI

Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–173. doi: 10.1111/1462-2920.12930. PubMed DOI

Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature. 2008;452:741–744. doi: 10.1038/nature06776. PubMed DOI

Doxey Andrew C, Kurtz Daniel A, Lynch Michael DJ, Sauder Laura A, Neufeld Josh D. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. The ISME Journal. 2014;9(2):461–471. doi: 10.1038/ismej.2014.142. PubMed DOI PMC

Qin Wei, Amin Shady A, Lundeen Rachel A, Heal Katherine R, Martens-Habbena Willm, Turkarslan Serdar, Urakawa Hidetoshi, Costa Kyle C, Hendrickson Erik L, Wang Tony, Beck David AC, Tiquia-Arashiro Sonia M, Taub Fred, Holmes Andrew D, Vajrala Neeraja, Berube Paul M, Lowe Todd M, Moffett James W, Devol Allan H, Baliga Nitin S, Arp Daniel J, Sayavedra-Soto Luis A, Hackett Murray, Armbrust E Virginia, Ingalls Anitra E, Stahl David A. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. The ISME Journal. 2017;12(2):508–519. doi: 10.1038/ismej.2017.186. PubMed DOI PMC

Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B 12 ): synthesis and biological significance. 1996. PubMed

Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:1–7. doi: 10.1128/mBio.00036-12. PubMed DOI PMC

Men Y, Seth EC, Yi S, Allen RH, Taga ME, Alvarez-cohen L. Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia. Appl Environmantal Microbiol. 2014;80:2133–2141. doi: 10.1128/AEM.03477-13. PubMed DOI PMC

Escalante-Semerena JC. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol. 2007;189:4555–4560. doi: 10.1128/JB.00503-07. PubMed DOI PMC

Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One. 2009;4:e4207. doi: 10.1371/journal.pone.0004207. PubMed DOI PMC

Sutcliffe IC. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol. 2011;13:279–282. doi: 10.1111/j.1462-2920.2010.02339.x. PubMed DOI

Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science. 2005;309:2061–2064. doi: 10.1126/science.1118046. PubMed DOI PMC

Balashov SP, Lanyi JK. Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci. 2007;64:2323–2328. doi: 10.1007/s00018-007-7167-y. PubMed DOI PMC

Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP. Functions of carotenoids in Xanthorhodopsin and Archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim Biophys Acta. 2006;1757:1649–1656. doi: 10.1016/j.bbabio.2006.08.012. PubMed DOI PMC

Zeng Y, Feng F, Medová H, Dean J, Koblízek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. PNAS. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC

Simek K, Bobková J, Macek M, Nedoma J, Psenner R. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr. 1995;40:1077–1090. doi: 10.4319/lo.1995.40.6.1077. DOI

Martín-Cuadrado A-B, López-García P, Alba J-C, Moreira D, Monticelli L, Strittmatter A, et al. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One. 2007;2:e914. doi: 10.1371/journal.pone.0000914. PubMed DOI PMC

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Nawrocki E. Structural RNA homology search and alignment using covariance models. ST. Louis: PhD thesis. Washington University; 2009.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–1829. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC

Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–1371. doi: 10.1093/nar/gkh293. PubMed DOI PMC

Stamatakis A, Ludwig T, Meier H. RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. Concurr Comput Pract Exp. 2005;17:1705–1723. doi: 10.1002/cpe.954. DOI

Zeder M, Pernthaler J. Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria. Cytom Part A. 2009;75:781–788. doi: 10.1002/cyto.a.20770. PubMed DOI

Posch T, Franzoi J, Prader M, Salcher MM. New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol. 2009;54:113–126. doi: 10.3354/ame01269. DOI

Nurk Sergey, Meleshko Dmitry, Korobeynikov Anton, Pevzner Pavel A. metaSPAdes: a new versatile metagenomic assembler. Genome Research. 2017;27(5):824–834. doi: 10.1101/gr.213959.116. PubMed DOI PMC

Bolger Anthony M., Lohse Marc, Usadel Bjoern. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC

Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC

Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–1028. PubMed

Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. doi: 10.7717/peerj.1165. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. PubMed DOI PMC

Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–43. doi: 10.1093/nar/29.1.41. PubMed DOI PMC

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC

Aziz RK, Bartels D, A a B, DeJongh M, Disz T, RA E, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res. 2003;31:6633–6639. doi: 10.1093/nar/gkg847. PubMed DOI PMC

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. doi: 10.1038/ncomms3304. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–1116. doi: 10.1093/oxfordjournals.molbev.a026201. DOI

Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005;102:2567–2572. doi: 10.1073/pnas.0409727102. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global freshwater distribution of Telonemia protists

. 2024 Jan 08 ; 18 (1) : .

Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake

. 2023 Feb ; 15 (1) : 60-71. [epub] 20221212

The Evolutionary Kaleidoscope of Rhodopsins

. 2022 Oct 26 ; 7 (5) : e0040522. [epub] 20220919

Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

. 2022 Apr ; 16 (4) : 1046-1054. [epub] 20211120

Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms

. 2021 Dec 22 ; 6 (6) : e0066121. [epub] 20211124

Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing

. 2021 Jan 22 ; 9 (1) : 24. [epub] 20210122

Expanded Diversity and Metabolic Versatility of Marine Nitrite-Oxidizing Bacteria Revealed by Cultivation- and Genomics-Based Approaches

. 2020 Oct 28 ; 86 (22) : . [epub] 20201028

Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment

. 2020 Jul 01 ; 5 (4) : . [epub] 20200701

Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria

. 2019 Dec 10 ; 9 (1) : 18766. [epub] 20191210

Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics

. 2019 Oct 20 ; 7 (1) : 135. [epub] 20191020

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace