The Evolutionary Kaleidoscope of Rhodopsins

. 2022 Oct 26 ; 7 (5) : e0040522. [epub] 20220919

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36121162

Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.

Zobrazit více v PubMed

Rozenberg A, Inoue K, Kandori H, Béjà O. 2021. Microbial Rhodopsins: the last two decades. Annu Rev Microbiol 75:427–447. doi:10.1146/annurev-micro-031721-020452. PubMed DOI

Gushchin I, Gordeliy V. 2018. Microbial Rhodopsins. Subcell Biochem 87:19–56. doi:10.1007/978-981-10-7757-9_2. PubMed DOI

Kandori H. 2021. History and perspectives of ion-transporting rhodopsins. Adv Exp Med Biol 1293:3–19. doi:10.1007/978-981-15-8763-4_1. PubMed DOI

Rozenberg A, Oppermann J, Wietek J, Fernandez Lahore RG, Sandaa R-A, Bratbak G, Hegemann P, Béjà O. 2020. Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Curr Biol 30:4910–4920.e5. doi:10.1016/j.cub.2020.09.056. PubMed DOI

Govorunova EG, Gou Y, Sineshchekov OA, Li H, Wang Y, Brown LS, Xue M, Spudich JL. 2021. Kalium rhodopsins: natural light-gated potassium channels. bioRxiv. 10.1101/2021.09.17.460684. PubMed DOI PMC

Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Palmateer A, Melkonian M, Cheng S, Carpenter E, Patterson J, Wong GK-S, Spudich JL. 2021. Cation and anion channelrhodopsins: sequence motifs and taxonomic distribution. mBio 12:e0165621. doi:10.1128/mBio.01656-21. PubMed DOI PMC

Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL. 2020. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci USA 117:22833–22840. doi:10.1073/pnas.2005981117. PubMed DOI PMC

Bulzu P-A, Andrei A-Ş, Salcher MM, Mehrshad M, Inoue K, Kandori H, Beja O, Ghai R, Banciu HL. 2019. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 4:1129–1137. doi:10.1038/s41564-019-0404-y. PubMed DOI

Bulzu P-A, Kavagutti VS, Chiriac M-C, Vavourakis CD, Inoue K, Kandori H, Andrei A-S, Ghai R. 2021. Heliorhodopsin evolution is driven by photosensory promiscuity in monoderms. mSphere 6:e0066121. doi:10.1128/mSphere.00661-21. PubMed DOI PMC

Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163. doi:10.1021/cr4003769. PubMed DOI PMC

Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, Tomida S, Ito S, Nakamura R, Tsunoda SP, Philosof A, Sharon I, Yutin N, Koonin EV, Kandori H, Béjà O. 2018. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595–599. doi:10.1038/s41586-018-0225-9. PubMed DOI PMC

Nagata T, Inoue K. 2021. Rhodopsins at a glance. J Cell Sci 134:jcs258989. doi:10.1242/jcs.258989. PubMed DOI

Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152. doi:10.1038/newbio233149a0. PubMed DOI

Otto H, Marti T, Holz M, Mogi T, Stern LJ, Engel F, Khorana HG, Heyn MP. 1990. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci USA 87:1018–1022. doi:10.1073/pnas.87.3.1018. PubMed DOI PMC

Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. 1999. Two groups control light-induced schiff base deprotonation and the proton affinity of Asp85 in the Arg82His mutant of bacteriorhodopsin. Biophys J 77:2750–2763. doi:10.1016/S0006-3495(99)77108-0. PubMed DOI PMC

Hutson MS, Alexiev U, Shilov SV, Wise KJ, Braiman MS. 2000. Evidence for a perturbation of arginine-82 in the bacteriorhodopsin photocycle from time-resolved infrared spectra. Biochemistry 39:13189–13200. doi:10.1021/bi000426q. PubMed DOI

Brown LS, Bonet L, Needleman R, Lanyi JK. 1993. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Biophys J 65:124–130. doi:10.1016/S0006-3495(93)81064-6. PubMed DOI PMC

Balashov SP, Govindjee R, Imasheva ES, Misra S, Ebrey TG, Feng Y, Crouch RK, Menick DR. 1995. The two pKa’s of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry 34:8820–8834. doi:10.1021/bi00027a034. PubMed DOI

Balashov SP, Imasheva ES, Govindjee R, Ebrey TG. 1996. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J 70:473–481. doi:10.1016/S0006-3495(96)79591-7. PubMed DOI PMC

Govindjee R, Misra S, Balashov SP, Ebrey TG, Crouch RK, Menick DR. 1996. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Biophys J 71:1011–1023. doi:10.1016/S0006-3495(96)79302-5. PubMed DOI PMC

Stern LJ, Khorana HG. 1989. Structure-function studies on bacteriorhodopsin. X. Individual substitutions of arginine residues by glutamine affect chromophore formation, photocycle, and proton translocation. J Biol Chem 264:14202–14208. doi:10.1016/S0021-9258(18)71663-3. PubMed DOI

Ugalde JA, Podell S, Narasingarao P, Allen EE. 2011. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52. doi:10.1186/1745-6150-6-52. PubMed DOI PMC

Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, Juettner J, Chizhov I, Bamann C, Vavourakis C, Ghai R, Gushchin I, Borshchevskiy V, Rogachev A, Melnikov I, Popov A, Balandin T, Rodriguez-Valera F, Manstein DJ, Bueldt G, Bamberg E, Gordeliy V. 2017. Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3:e1603187. doi:10.1126/sciadv.1603187. PubMed DOI PMC

Flores-Uribe J, Hevroni G, Ghai R. 2019. Heliorhodopsins are absent in diderm (Gram-negative) bacteria: some thoughts and possible implications for activity. Environmental Microbiology Reports. PubMed

Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. 2021. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol 19:e3001430. doi:10.1371/journal.pbio.3001430. PubMed DOI PMC

Aylward FO, Moniruzzaman M. 2021. ViralRecall-a flexible command-line tool for the detection of giant virus signatures in ’omic data. Viruses 13:150. doi:10.3390/v13020150. PubMed DOI PMC

Sephus CD, Fer E, Garcia AK, Adam ZR, Schwieterman EW, Kaçar B. 2021. Functional divergence and spectral tuning of microbial rhodopsins from an ancestral proton pump. Mol Bio Evol 39:msac100. doi:10.1093/molbev/msac100. PubMed DOI PMC

Inoue K, Tsunoda SP, Singh M, Tomida S, Hososhima S, Konno M, Nakamura R, Watanabe H, Bulzu P-A, Banciu HL, Andrei A-Ş, Uchihashi T, Ghai R, Béjà O, Kandori H. 2020. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci Adv 6:eaaz2441. doi:10.1126/sciadv.aaz2441. PubMed DOI PMC

Wong HL, MacLeod FI, White RA, 3rd, Visscher PT, Burns BP. 2020. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome 8:135. doi:10.1186/s40168-020-00910-0. PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi:10.1038/s41586-021-03819-2. PubMed DOI PMC

Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH. 2014. MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42:D297–D303. doi:10.1093/nar/gkt1208. PubMed DOI PMC

Stolboushkina E, Nikonov S, Nikulin A, Bläsi U, Manstein DJ, Fedorov R, Garber M, Nikonov O. 2008. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the alpha- and beta-subunits. J Mol Biol 382:680–691. doi:10.1016/j.jmb.2008.07.039. PubMed DOI

Qiao F, Song H, Kim CA, Sawaya MR, Hunter JB, Gingery M, Rebay I, Courey AJ, Bowie JU. 2004. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 118:163–173. doi:10.1016/j.cell.2004.07.010. PubMed DOI

Rajakulendran T, Sahmi M, Kurinov I, Tyers M, Therrien M, Sicheri F. 2008. CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc Natl Acad Sci USA 105:2836–2841. doi:10.1073/pnas.0709705105. PubMed DOI PMC

Peterson AJ, Kyba M, Bornemann D, Morgan K, Brock HW, Simon J. 1997. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol 17:6683–6692. doi:10.1128/MCB.17.11.6683. PubMed DOI PMC

Zhang Y, Skolnick J. 2005. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309. doi:10.1093/nar/gki524. PubMed DOI PMC

Aravind L, Iyer LM, Anantharaman V. 2010. Natural history of sensor domains in bacterial signaling systems, p 1–38. In Stephen Spiro RD (ed), Sensory Mechanisms in Bacteria: molecular Aspects of Signal Recognition. Caister Academic Press; Norfolk, UK.

Möglich A, Ayers RA, Moffat K. 2009. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294. doi:10.1016/j.str.2009.08.011. PubMed DOI PMC

Circolone F, Granzin J, Jentzsch K, Drepper T, Jaeger K-E, Willbold D, Krauss U, Batra-Safferling R. 2012. Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida. J Mol Biol 417:362–374. doi:10.1016/j.jmb.2012.01.056. PubMed DOI

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618. doi:10.1038/nrg2386. PubMed DOI

Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 38:1079–1086. doi:10.1038/s41587-020-0501-8. PubMed DOI

UniProt Consortium. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. doi:10.1093/nar/gkaa1100. PubMed DOI PMC

Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen I-M, Huntemann M, Palaniappan K, Ladau J, Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP, Edirisinghe JN, Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP, Tringe SG, Visel A, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-Fadrosh EA, IMG/M Data Consortium . 2021. A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509. doi:10.1038/s41587-020-00769-4. PubMed DOI PMC

Kavagutti VS, Andrei A-Ş, Mehrshad M, Salcher MM, Ghai R. 2019. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7:135. doi:10.1186/s40168-019-0752-0. PubMed DOI PMC

Mujakić I, Andrei A-Ş, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. 2021. Common presence of phototrophic gemmatimonadota in temperate freshwater lakes. mSystems 6:e01241-20. doi:10.1128/mSystems.01241-20. PubMed DOI PMC

Andrei A-Ş, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. 2019. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 13:1056–1071. doi:10.1038/s41396-018-0332-5. PubMed DOI PMC

Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K, Andrei A-S, Ghai R. 2018. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 6:176. doi:10.1186/s40168-018-0563-8. PubMed DOI PMC

Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, Tamatamah R, McMahon KD, Anantharaman K. 2021. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 15:1971–1986. doi:10.1038/s41396-021-00898-x. PubMed DOI PMC

Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R, Rodriguez-Valera F. 2019. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 94:fiy163. doi:10.1002/lno.11401. DOI

Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. 2014. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol 23:6073–6090. doi:10.1111/mec.12985. PubMed DOI

Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado A-B, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F. 2017. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol 8:1151. doi:10.3389/fmicb.2017.01151. PubMed DOI PMC

Linz AM, He S, Stevens SLR, Anantharaman K, Rohwer RR, Malmstrom RR, Bertilsson S, McMahon KD. 2018. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 6:e6075. doi:10.7717/peerj.6075. PubMed DOI PMC

Satinsky BM, Fortunato CS, Doherty M, Smith CB, Sharma S, Ward ND, Krusche AV, Yager PL, Richey JE, Moran MA, Crump BC. 2015. Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome 3:39. doi:10.1186/s40168-015-0099-0. PubMed DOI PMC

Mehrshad M, Amoozegar MA, Ghai R, Shahzadeh Fazeli SA, Rodriguez-Valera F. 2016. Genome reconstruction from metagenomic data sets reveals novel microbes in the brackish waters of the Caspian Sea. Appl Environ Microbiol 82:1599–1612. doi:10.1128/AEM.03381-15. PubMed DOI PMC

Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, Hogle SL, Coe A, Bergauer K, Bouman HA, Browning TJ, De Corte D, Hassler C, Hulston D, Jacquot JE, Maas EW, Reinthaler T, Sintes E, Yokokawa T, Chisholm SW. 2018. Marine microbial metagenomes sampled across space and time. Sci Data 5:180176. doi:10.1038/sdata.2018.176. PubMed DOI PMC

Sunagawa S, Coelho LP, Chaffron S, Kultima JR. 2015. Structure and function of the global ocean microbiome. Science 348:6237. doi:10.1126/science.1261359. PubMed DOI

Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G. 2016. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake brines. Front Microbiol 7:211. doi:10.3389/fmicb.2016.00211. PubMed DOI PMC

Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. 2018. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6:168. doi:10.1186/s40168-018-0548-7. PubMed DOI PMC

Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-Ş, Ghai R, Sorokin DY, Muyzer G. 2019. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 17:69. doi:10.1186/s12915-019-0688-7. PubMed DOI PMC

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, et al. . 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. doi:10.1371/journal.pbio.1001889. PubMed DOI PMC

Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam T-W. 2016. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11. doi:10.1016/j.ymeth.2016.02.020. PubMed DOI

Oppermann J, Fischer P, Silapetere A, Liepe B, Rodriguez-Rozada S, Flores-Uribe J, Peter E, Keidel A, Vierock J, Kaufmann J, Broser M, Luck M, Bartl F, Hildebrandt P, Wiegert JS, Béjà O, Hegemann P, Wietek J. 2019. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 10:3315. doi:10.1038/s41467-019-11322-6. PubMed DOI PMC

Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H. 2013. A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1–10. doi:10.1038/ncomms2689. PubMed DOI

Kataoka C, Sugimoto T, Shigemura S, Katayama K, Tsunoda SP, Inoue K, Béjà O, Kandori H. 2021. TAT Rhodopsin is an ultraviolet-dependent environmental pH sensor. Biochemistry 60:899–907. doi:10.1021/acs.biochem.0c00951. PubMed DOI

Yutin N, Koonin EV. 2012. Proteorhodopsin genes in giant viruses. Biol Direct 7:34. doi:10.1186/1745-6150-7-34. PubMed DOI PMC

Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119. PubMed DOI PMC

Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi:10.1371/journal.pcbi.1002195. PubMed DOI PMC

Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi:10.1038/nbt.3988. PubMed DOI

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC

Käll L, Krogh A, Sonnhammer ELL. 2005. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21 Suppl 1:i251–i257. doi:10.1093/bioinformatics/bti1014. PubMed DOI

Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD. 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. doi:10.1093/nar/gkaa977. PubMed DOI PMC

Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. doi:10.1093/nar/gku1223. PubMed DOI PMC

Haft DH, Selengut JD, White O. 2003. The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373. doi:10.1093/nar/gkg128. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006. PubMed DOI

Li X, Chen F, Chen Y. 2020. Gcluster: a simple-to-use tool for visualizing and comparing genome contexts for numerous genomes. Bioinformatics 36:3871–3873. doi:10.1093/bioinformatics/btaa212. PubMed DOI

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. doi:10.1093/molbev/msaa015. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. doi:10.1038/nmeth.4285. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. doi:10.1093/molbev/msx281. PubMed DOI PMC

Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T. 2015. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol 22:377–386. doi:10.1089/cmb.2014.0156. PubMed DOI PMC

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. doi:10.1093/nar/gky995. PubMed DOI PMC

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. doi:10.1093/nar/gkz991. PubMed DOI PMC

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204. doi:10.1093/nar/gky448. PubMed DOI PMC

Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430:2237–2243. doi:10.1016/j.jmb.2017.12.007. PubMed DOI

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2021. ColabFold - Making protein folding accessible to all. Nat Methods 19:679–682. doi:10.1038/s41592-022-01488-1. PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084. PubMed DOI

Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. 2015. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407. doi:10.1093/nar/gkv485. PubMed DOI PMC

Käll L, Krogh A, Sonnhammer ELL. 2004. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036. doi:10.1016/j.jmb.2004.03.016. PubMed DOI

Thornton JW. 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5:366–375. doi:10.1038/nrg1324. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ubiquitous genome streamlined Acidobacteriota in freshwater environments

. 2024 Jan ; 4 (1) : ycae124. [epub] 20241022

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace