Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
322551
European Research Council - International
PubMed
31438955
PubMed Central
PMC6704655
DOI
10.1186/s12915-019-0688-7
PII: 10.1186/s12915-019-0688-7
Knihovny.cz E-zdroje
- Klíčová slova
- Gemmatimonadetes, Haloalkaliphiles, Metagenomics, Metatranscriptomics, Nitrogen fixation, Polysulfide, Soda lake, Tetrathionate, Thiosulfate, Woesearchaeota,
- MeSH
- Archaea klasifikace genetika metabolismus MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- jezera chemie mikrobiologie MeSH
- koncentrace vodíkových iontů MeSH
- metagenom MeSH
- oxidace-redukce MeSH
- salinita MeSH
- síra analýza metabolismus MeSH
- soli chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sibiř MeSH
- Názvy látek
- brine MeSH Prohlížeč
- síra MeSH
- soli MeSH
BACKGROUND: The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. RESULTS: Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the "Candidatus Woesearchaeota." Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. CONCLUSIONS: The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.
Zobrazit více v PubMed
Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci. 2011;4:698–702. doi: 10.1038/ngeo1238. DOI
Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–814. doi: 10.1038/nrmicro1991. PubMed DOI
Canfield DE. The evolution of the sulfur cycle. Am J Sci. 1999;299:697–723. doi: 10.2475/ajs.299.7-9.697. DOI
Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–1558. doi: 10.1038/ismej.2017.37. PubMed DOI PMC
Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–645. doi: 10.1038/296643a0. DOI
Schagerl Michael., editor. Soda Lakes of East Africa. Cham: Springer International Publishing; 2016.
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014;18:791–809. doi: 10.1007/s00792-014-0670-9. PubMed DOI PMC
Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol. 2011;2:44. doi: 10.3389/fmicb.2011.00044. PubMed DOI PMC
Sorokin DY, Banciu H, Robertson LA, Kuenen JG, Muntyan MS, Muyzer G. The prokaryotes. Berlin: Springer Berlin Heidelberg; 2013. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria; pp. 529–554.
Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol. 2015;25:88–96. doi: 10.1016/J.MIB.2015.05.004. PubMed DOI
Sorokin DY. Encyclopedia of life sciences. Chichester: Wiley; 2017. Anaerobic haloalkaliphiles; pp. 1–16.
Oren A. The prokaryotes. Berlin: Springer Berlin Heidelberg; 2014. The family Ectothiorhodospiraceae; pp. 199–222.
Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, Mena MC, et al. Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes. Front Microbiol. 2018;9:2359. doi: 10.3389/fmicb.2018.02359. PubMed DOI PMC
Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. 2018;12:2479–2491. doi: 10.1038/s41396-018-0209-7. PubMed DOI PMC
Brito JA, Sousa FL, Stelter M, Bandeiras TM, Vonrhein C, Teixeira M, et al. Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry. 2009;48:5613–5622. doi: 10.1021/bi9003827. PubMed DOI
Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio. 2017;8:1–9. doi: 10.1128/mBio.00671-17. PubMed DOI PMC
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9:323–344. doi: 10.1111/1758-2229.12538. PubMed DOI PMC
Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles. 2013;17:1003–1012. doi: 10.1007/s00792-013-0582-0. PubMed DOI
Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol. 2001;67:2873–2882. doi: 10.1128/AEM.67.7.2873-2882.2001. PubMed DOI PMC
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–1043. doi: 10.1111/j.1574-6976.2009.00187.x. PubMed DOI
Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol. 2000;182:4677–4687. doi: 10.1128/JB.182.17.4677-4687.2000. PubMed DOI PMC
Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lubbe Y, et al. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol. 2005;187:1392–1404. doi: 10.1128/JB.187.4.1392-1404.2005. PubMed DOI PMC
Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol. 2004;53:1147–1160. doi: 10.1111/j.1365-2958.2004.04193.x. PubMed DOI
Brito JA, Denkmann K, Pereira IAC, Archer M, Dahl C. Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum. J Biol Chem. 2015;290:9222–9238. doi: 10.1074/jbc.M114.623397. PubMed DOI PMC
Denkmann K, Grein F, Zigann R, Siemen A, Bergmann J, van Helmont S, et al. Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome. Environ Microbiol. 2012;14:2673–2688. doi: 10.1111/j.1462-2920.2012.02820.x. PubMed DOI
Sorokin DY. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology. 2003;72:641–653. doi: 10.1023/B:MICI.0000008363.24128.e5. PubMed DOI
Burns JL, DiChristina TJ. Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica Serovar Typhimurium LT2. Appl Environ Microbiol. 2009;75:5209–5217. doi: 10.1128/AEM.00888-09. PubMed DOI PMC
Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev. 1998;22:353–381. doi: 10.1111/J.1574-6976.1998.TB00376.X. DOI
Berks BC, Hinsley AP. Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. Microbiology. 2002;148:3631–3638. doi: 10.1099/00221287-148-11-3631. PubMed DOI
Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, et al. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Stand Genomic Sci. 2016;11:67. doi: 10.1186/s40793-016-0184-4. PubMed DOI PMC
Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G. Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia) Extremophiles. 2008;12:133–145. doi: 10.1007/s00792-007-0117-7. PubMed DOI
Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiol Ecol. 2013;84:280–289. doi: 10.1111/1574-6941.12056. PubMed DOI
Edwardson CF, Hollibaugh JT. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. ISME J. 2017;11:2195–2208. doi: 10.1038/ismej.2017.80. PubMed DOI PMC
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol. 2016;7:211. doi: 10.3389/fmicb.2016.00211. PubMed DOI PMC
Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 2018;6:168. doi: 10.1186/s40168-018-0548-7. PubMed DOI PMC
van Breugel F, Dickinson MH. Superhydrophobic diving flies (Ephydra hians) and the hypersaline waters of Mono Lake. Proc Natl Acad Sci. 2017;114:13483–13488. doi: 10.1073/pnas.1714874114. PubMed DOI PMC
Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, et al. Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol. 2017;67:5159–5164. doi: 10.1099/ijsem.0.002437. PubMed DOI
Boden R, Scott KM, Williams J, Russel S, Antonen K, Rae AW, et al. An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomic. Int J Syst Evol Microbiol. 2017;67:1140–1151. doi: 10.1099/ijsem.0.001855. PubMed DOI
Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J. 2014;8:383–397. doi: 10.1038/ismej.2013.143. PubMed DOI PMC
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. MAGs from Cock Soda Lake. 2019. PubMed PMC
Timmers PHA, Vavourakis CD, Kleerebezem R, Damsté JSS, Muyzer G, Stams AJM, et al. Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments. Front Microbiol. 2018;9:1–18. doi: 10.3389/fmicb.2018.03039. PubMed DOI PMC
Namsaraev Z, Samylina O, Sukhacheva M, Borisenko G, Sorokin DY, Tourova T. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia) Extremophiles. 2018;22:651–663. doi: 10.1007/s00792-018-1026-7. PubMed DOI
Samylina OS, Sapozhnikov FV, Gainanova OY, Ryabova AV, Nikitin MA, Sorokin DY. Algo-bacterial communities of the Kulunda steppe (Altai Region, Russia) Soda Lakes. Microbiology. 2014;83:849–860. doi: 10.1134/S0026261714060162. PubMed DOI
Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI. Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol. 2009;59:248–253. doi: 10.1099/ijs.0.002204-0. PubMed DOI
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. MAGs from hypersaline soda lake sediments. 2019.
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes, metatranscriptome and 16S rRNA gene and transcript amplicon sequencing. 2018.
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Assembled contigs metatranscriptome. 2019. PubMed PMC
Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS. A comparative genomic analysis of energy metabolism in sulfate reducing Bacteria and Archaea. Front Microbiol. 2011;2:69. doi: 10.3389/fmicb.2011.00069. PubMed DOI PMC
Czyzewski Bryan K., Wang Da-Neng. Identification and characterization of a bacterial hydrosulphide ion channel. Nature. 2012;483(7390):494–497. doi: 10.1038/nature10881. PubMed DOI PMC
Sorokin DY, Tourova TP, Braker G, Muyzer G. Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol. 2007;57:1582–1589. doi: 10.1099/ijs.0.65112-0. PubMed DOI
Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol. 2017;9:1950–1962. doi: 10.1093/gbe/evx141. PubMed DOI PMC
Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol. 1999;32:275–287. doi: 10.1046/j.1365-2958.1999.01345.x. PubMed DOI
Nolla-Ardèvol V, Strous M, Tegetmeyer HE. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front Microbiol. 2015:1–21. doi:10.3389/fmicb.2015.00597. PubMed PMC
Sorokin DY, Kuenen JG. Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol. 2005;52:287–295. doi: 10.1016/j.femsec.2005.02.012. PubMed DOI
Sorokin DY, Rusanov II, Pimenov N V., Tourova TP, Abbas B, Muyzer G. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol. 2010;73:no-no. doi:10.1111/j.1574-6941.2010.00901.x. PubMed
Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–179. doi: 10.1038/nature14447. PubMed DOI PMC
Zeng Y, Feng F, Medova H, Dean J, Kobli ek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC
Dachev M, Bína D, Sobotka R, Moravcová L, Gardian Z, Kaftan D, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLOS Biol. 2017;15:e2003943. doi: 10.1371/journal.pbio.2003943. PubMed DOI PMC
Chernousova E, Gridneva E, Grabovich M, Dubinina G, Akimov V, Rossetti S, et al. Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs. Int J Syst Evol Microbiol. 2009;59:3128–3135. doi: 10.1099/ijs.0.009456-0. PubMed DOI
König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2017;2:16193. doi: 10.1038/nmicrobiol.2016.193. PubMed DOI
Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–1728. doi: 10.1038/s41396-018-0078-0. PubMed DOI PMC
Ma K, Schicho RN, Kelly RM, Adams MW. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci. 1993;90:5341–5344. doi: 10.1073/pnas.90.11.5341. PubMed DOI PMC
Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:102. doi: 10.1186/s40168-018-0488-2. PubMed DOI PMC
Sorokin DY, Abbas B, Geleijnse M, Pimenov NV, Sukhacheva MV, van Loosdrecht MCM. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia) FEMS Microbiol Ecol. 2015;91:1–12. doi: 10.1093/femsec/fiv016. PubMed DOI
Lee KM, Adams M, Klassen JL. Evaluation of DESS as a storage medium for microbial community analysis. PeerJ. 2019;7:e6414. doi: 10.7717/peerj.6414. PubMed DOI PMC
Van Wesemael JC. De bepaling van het calciumcarbonaatgehalte van gronden. Chem Weekbl. 1955;51:35–36.
Zopfi J, Ferdelman TG, Fossing H. Distribution and fate of sulfur intermediates—sulfite, tetrathionate, thiosulfate, and elemental sulfur—in marine sediments. In: Amend JP, Edwards KJ, Lyons TW, editors. Sulfur biogeochemistry: past and present. Boulder: Geological Society of America; 2004. pp. 97–116.
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–1414. doi: 10.1111/1462-2920.13023. PubMed DOI
Joshi NA, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. github.com/najoshi/sickle.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Andersen KSS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018:299537. doi:10.1101/299537.
DOE JGI. BBDuk (BBDuk version 36.19). jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/. Accessed 20 June 2017.
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676. doi: 10.1093/bioinformatics/btv033. PubMed DOI
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.0955. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. doi: 10.7717/peerj.1165. PubMed DOI PMC
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes soda lakes - T1Sed10. 2015. https://www.ncbi.nlm.nih.gov/sra/SRX143969[accn].
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes soda lakes - B1-Sed10. 2015.
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Raw sequence reads metagenomes soda lakes - T5-Br10. 2015.
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Raw sequence reads metagenomes soda lakes - PL-Br10. 2015.
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Raw sequence reads metagenomes soda lakes - Tc-Br11. 2015.
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Raw sequence reads metagenomes soda lakes - B1-Br10. 2015.
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes soda lakes - CSSed10. 2015.
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes soda lakes - CSSed11. 2015.
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Raw sequence reads metagenomes soda lakes - T3-Sed10. 2015. https://www.ncbi.nlm.nih.gov/sra/SRX143967[accn].
Bushnell B, Egan R, Copeland A, Foster B, Clum A, Sun H, et al. BBMap: a fast, accurate, splice-aware aligner. 2014. 10.1186/1471-2105-13-238.
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319. doi: 10.7717/peerj.1319. PubMed DOI PMC
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996. doi: 10.1038/nbt.4229. PubMed DOI
Klappenbach JA, Goris J, Vandamme P, Coenye T, Konstantinidis KT, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293. doi: 10.1093/nar/gkv1248. PubMed DOI PMC
Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases. ISME J. 2015;9:1152–1165. doi: 10.1038/ismej.2014.208. PubMed DOI PMC
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-S, Ghai R, et al. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake: Supplementary Electronic Files Online. 2019. doi:10.21942/uva.c.4594961. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2004;33(Database issue):D121–D124. doi: 10.1093/nar/gki081. PubMed DOI PMC
Doe JGI. dedupe.sh. jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/dedupe-guide/. Accessed 20 June 2017.
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048. doi: 10.1038/nmicrobiol.2016.48. PubMed DOI
Harris KA, Zhou Z, Peters ML, Wilkins SG, Breaker RR. A second RNA-binding protein is essential for ethanol tolerance provided by the bacterial OLE ribonucleoprotein complex. Proc Natl Acad Sci. 2018;115:E6319–E6328. doi: 10.1073/pnas.1803191115. PubMed DOI PMC
Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota
Thiothrix and Sulfurovum genera dominate bacterial mats in Slovak cold sulfur springs
The Evolutionary Kaleidoscope of Rhodopsins
Phylum Gemmatimonadota and Its Role in the Environment
Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms
Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes