Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics

. 2019 Oct 20 ; 7 (1) : 135. [epub] 20191020

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31630686
Odkazy

PubMed 31630686
PubMed Central PMC6802176
DOI 10.1186/s40168-019-0752-0
PII: 10.1186/s40168-019-0752-0
Knihovny.cz E-zdroje

The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.

Erratum v

PubMed

Zobrazit více v PubMed

Sommer U, Adrian R, De Senerpont DL, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst Annual Reviews. 2012;43:429–448. doi: 10.1146/annurev-ecolsys-110411-160251. DOI

Wetzel RG. Freshwater ecosystems. Encycl Biodivers. Elsevier; 2001. p. 560–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123847195000605

Suttle CA. The significance of viruses to mortality in aquatic microbial communities. Microb Ecol. 1994;28:237–243. doi: 10.1007/BF00166813. PubMed DOI

Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236–1242. doi: 10.4319/lo.1995.40.7.1236. DOI

Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Saňudo-Wilhelmy SA. Release and bioavailability of C, N, P Se, and Fe following viral lysis of a marine chrysophyte. Limnol Oceanogr. 1997;42:1492–1504. doi: 10.4319/lo.1997.42.7.1492. DOI

Middelboe M, Jørgensen NOG. Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J Mar Biol Assoc. 2006;86:605–612. doi: 10.1017/S0025315406013518. DOI

Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–1914. doi: 10.1126/science.272.5270.1910. PubMed DOI

Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Béjà O. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol. 2005;7:1505–1513. doi: 10.1111/j.1462-2920.2005.00833.x. PubMed DOI

Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol. 2009;7:828–836. PubMed

Suttle CA. Marine viruses — major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–812. doi: 10.1038/nrmicro1750. PubMed DOI

Yoshida T, Nagasaki K, Takashima Y, Shirai Y, Tomaru Y, Takao Y, et al. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse Cyanophage genome strategies. J Bacteriol. 2008;190:1762–1772. doi: 10.1128/JB.01534-07. PubMed DOI PMC

Chénard C, Wirth JF, Suttle CA. Viruses infecting a freshwater filamentous cyanobacterium ( Nostoc sp.) encode a functional CRISPR array and a proteobacterial DNA polymerase B. MBio. 2016;7:e00667–e00616. doi: 10.1128/mBio.00667-16. PubMed DOI PMC

Moon K, Kang I, Kim S, Kim S-J, Cho J-C. Genome characteristics and environmental distribution of the first phage that infects the LD28 clade, a freshwater methylotrophic bacterial group. Environ Microbiol. 2017;19:4714–4727. doi: 10.1111/1462-2920.13936. PubMed DOI

Moon K, Kang I, Kim S, Kim S-J, Cho J-C. Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium. Sci Rep. 2018;8:7989. doi: 10.1038/s41598-018-26363-y. PubMed DOI PMC

Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, et al. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One. 2012;7:e33641. doi: 10.1371/journal.pone.0033641. PubMed DOI PMC

Roux S, Chan L-K, Egan R, Malmstrom RR, McMahon KD, Sullivan MB. Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat Commun. 2017;8:858. doi: 10.1038/s41467-017-01086-2. PubMed DOI PMC

Skvortsov Timofey, de Leeuwe Colin, Quinn John P., McGrath John W., Allen Christopher C. R., McElarney Yvonne, Watson Catherine, Arkhipova Ksenia, Lavigne Rob, Kulakov Leonid A. Metagenomic Characterisation of the Viral Community of Lough Neagh, the Largest Freshwater Lake in Ireland. PLOS ONE. 2016;11(2):e0150361. doi: 10.1371/journal.pone.0150361. PubMed DOI PMC

Arkhipova K, Skvortsov T, Quinn JP, McGrath JW, Allen CCR, Dutilh BE, et al. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME J. 2018;12:199–211. doi: 10.1038/ismej.2017.157. PubMed DOI PMC

Ghai R, Mehrshad M, Mizuno CM, Rodriguez-Valera F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 2017;11:304–308. doi: 10.1038/ismej.2016.110. PubMed DOI PMC

Šimek K, Horňák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, et al. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol. 2008;51:249–262. doi: 10.3354/ame01193. DOI

Gabaldón C, Devetter M, Hejzlar J, Šimek K, Znachor P, Nedoma J, et al. Repeated flood disturbance enhances rotifer dominance and diversity in a zooplankton community of a small dammed mountain pond. J Limnol. 2016;76:292–304.

Znachor P, Hejzlar J, Vrba J, Nedoma J, Seda J, Simek K, et al. Brief history of long-term ecological research into aquatic ecosystems and their catchments in the Czech Republic: Part I : Manmade reservoirs. Institute of Hydrobiology, BC CAS, České Budějovice; 2016. Available from: http://www.gap2017.alga.cz/UserFiles/files/Manmade%20reservoirs.pdf.

Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep. 2013;3:2471. doi: 10.1038/srep02471. PubMed DOI PMC

Brum JR, Sullivan MB, Ignacio-espinoza JC, Roux S, Doulcier G, Acinas SG, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498. doi: 10.1126/science.1261498. PubMed DOI

Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, et al. Environmental viral genomes shed new light on virus-host interactions in the Ocean. mSphere. 2017:2 Available from: http://msphere.asm.org/lookup/doi/10.1128/mSphere.00359-16. PubMed DOI PMC

Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology. 1996;10:255–263. doi: 10.3354/ame010255. DOI

Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol. 2019;4:693–700. doi: 10.1038/s41564-018-0338-9. PubMed DOI PMC

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI

Bolduc Benjamin, Jang Ho Bin, Doulcier Guilhem, You Zhi-Qiang, Roux Simon, Sullivan Matthew B. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243. doi: 10.7717/peerj.3243. PubMed DOI PMC

Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 2018;12:185–198. doi: 10.1038/ismej.2017.156. PubMed DOI PMC

Warnecke F, Amann R, Pernthaler J. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol. 2004;6:242–253. doi: 10.1111/j.1462-2920.2004.00561.x. PubMed DOI

Hahn MW, Lunsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J, et al. Isolation of novel Ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol. 2003;69:1442–1451. doi: 10.1128/AEM.69.3.1442-1451.2003. PubMed DOI PMC

Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev. 2004;68:373–402. doi: 10.1128/MMBR.68.3.373-402.2004. PubMed DOI PMC

Lainhart W, Stolfa G, Koudelka GB. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol. 2009;191:5116–5122. doi: 10.1128/JB.00508-09. PubMed DOI PMC

Arnold JW, Koudelka GB. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ Microbiol. 2014;16:454–466. doi: 10.1111/1462-2920.12232. PubMed DOI

Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, et al. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett. 2006;261:141–149. doi: 10.1111/j.1574-6968.2006.00345.x. PubMed DOI

Mizuno CM, Guyomar C, Roux S, Lavigne R, Rodriguez-Valera F, Sullivan MB, et al. Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat Commun. 2019;10:752. PubMed PMC

Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol. 2019;21:521–530. doi: 10.1111/1462-2920.14445. PubMed DOI PMC

Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11:443–454. doi: 10.1038/nrmicro3032. PubMed DOI PMC

Ezraty B, Gennaris A, Barras F, Collet J-F. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 2017;15:385–396. doi: 10.1038/nrmicro.2017.26. PubMed DOI

Mizuno CM, Rodriguez-Valera F, Garcia-Heredia I, Martin-Cuadrado AB, Ghai R. Reconstruction of novel cyanobacterial siphovirus genomes from mediterranean metagenomic fosmids. Appl Environ Microbiol. 2013;79:688–695. doi: 10.1128/AEM.02742-12. PubMed DOI PMC

Weinbauer MG, Höfle MG. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol. 1998;64:431-38. PubMed PMC

Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornňák K, et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–1492. doi: 10.4319/lo.2014.59.5.1477. DOI

Siegmund L, Burmester A, Fischer MS, Wöstemeyer J. A model for endosymbiosis: interaction between Tetrahymena pyriformis and Escherichia coli. Eur J Protistol. 2013;49:552–563. doi: 10.1016/j.ejop.2013.04.007. PubMed DOI

Gourabathini P, Brandl MT, Redding KS, Gunderson JH, Berk SG. Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach. Appl Environ Microbiol. 2008;74:2518–2525. doi: 10.1128/AEM.02709-07. PubMed DOI PMC

Rehfuss MYM, Parker CT, Brandl MT. Salmonella transcriptional signature in Tetrahymena phagosomes and role of acid tolerance in passage through the protist. ISME J. 2011;5:262–273. doi: 10.1038/ismej.2010.128. PubMed DOI PMC

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC

Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its Core. J Mol Biol. 2018;430:2237–2243. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI

Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol. 2000;66:5053–5065. doi: 10.1128/AEM.66.11.5053-5065.2000. PubMed DOI PMC

Ghai R, McMahon KD, Rodriguez-Valera F. Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep. 2012;4:29–35. doi: 10.1111/j.1758-2229.2011.00274.x. PubMed DOI

Kang I, Kim S, Islam MR, Cho J-C. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep. 2017;7:46830. doi: 10.1038/srep46830. PubMed DOI PMC

Hahn MW, Schmidt J, Taipale SJ, Doolittle WF, Koll U. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol. 2014;64:3254–3263. doi: 10.1099/ijs.0.065292-0. PubMed DOI PMC

Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol. 2014;23:6073–6090. doi: 10.1111/mec.12985. PubMed DOI

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49. doi: 10.1128/MMBR.00028-10. PubMed DOI PMC

Allgaier M, Grossart H-P. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol. 2006;72:3489–3497. doi: 10.1128/AEM.72.5.3489-3497.2006. PubMed DOI PMC

Wu QL, Zwart G, Wu J, Kamst-van Agterveld MP, Liu S, Hahn MW. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake. China Environ Microbiol. 2007;9:2765–2774. doi: 10.1111/j.1462-2920.2007.01388.x. PubMed DOI

Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004. doi: 10.1038/nbt.4229. PubMed DOI

Znachor P, Visocká V, Nedoma J, Rychtecký P. Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir. Freshw Biol. 2013;58:1889–1902. doi: 10.1111/fwb.12178. DOI

Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat Commun. 2018;9:4698. doi: 10.1038/s41467-018-07164-3. PubMed DOI PMC

Andrei Adrian-Ştefan, Salcher Michaela M., Mehrshad Maliheh, Rychtecký Pavel, Znachor Petr, Ghai Rohit. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. The ISME Journal. 2019;13(4):1056–1071. doi: 10.1038/s41396-018-0332-5. PubMed DOI PMC

Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol. 2001;67:2723–2733. doi: 10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC

Šimek K, Weinbauer MG, Hornák K, Jezbera J, Nedoma J, Dolan JR. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol. 2007;9:789–800. doi: 10.1111/j.1462-2920.2006.01201.x. PubMed DOI

Mehrshad M, Salcher MM, Okazaki Y, Nakano S, Šimek K, Andrei A-S, et al. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 2018;6:176. PubMed PMC

Bushnell B. BBMap (version 35.14) [Software]. Available at https://sourceforge.net/projects/bbmap/. 2015.

Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi: 10.1016/j.ymeth.2016.02.020. PubMed DOI

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017; Available from: http://www.nature.com/doifinder/10.1038/nbt.3988. PubMed DOI

Nawrocki EP, Eddy SR. ssu-align: a tool for structural alignment of SSU rRNA sequences. 2010.

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. PubMed PMC

Bolduc B, Youens-Clark K, Roux S, Hurwitz BL, Sullivan MB. IVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 2017;11:7–14. doi: 10.1038/ismej.2016.89. PubMed DOI PMC

Amgarten D, Braga LPP, da Silva AM, Setubal JC. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 2018;9 Available from: https://www.frontiersin.org/article/10.3389/fgene.2018.00304/full. PubMed DOI PMC

Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet. 2013;9:e1003987. doi: 10.1371/journal.pgen.1003987. PubMed DOI PMC

Marchler-Bauer Aron, Bo Yu, Han Lianyi, He Jane, Lanczycki Christopher J., Lu Shennan, Chitsaz Farideh, Derbyshire Myra K., Geer Renata C., Gonzales Noreen R., Gwadz Marc, Hurwitz David I., Lu Fu, Marchler Gabriele H., Song James S., Thanki Narmada, Wang Zhouxi, Yamashita Roxanne A., Zhang Dachuan, Zheng Chanjuan, Geer Lewis Y., Bryant Stephen H. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research. 2016;45(D1):D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC

​Bushnell B. BBMap short-read aligner, and other bioinformatics tools. Bioinformatics. 2016. Available from: https://sourceforge.net/projects/bbmap.

Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. doi: 10.7717/peerj.1165. PubMed DOI PMC

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Haft DH. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–43. doi: 10.1093/nar/29.1.41. PubMed DOI PMC

Löytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol Biol. 2014;1079:155-170. PubMed

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC

Nguyen Lam-Tung, Schmidt Heiko A., von Haeseler Arndt, Minh Bui Quang. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution. 2014;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy Subha, Minh Bui Quang, Wong Thomas K F, von Haeseler Arndt, Jermiin Lars S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017;14(6):587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Hoang Diep Thi, Chernomor Olga, von Haeseler Arndt, Minh Bui Quang, Vinh Le Sy. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution. 2017;35(2):518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Bateman A. The Pfam protein families database. Nucleic Acids Res. 2004;32:138D–1141. doi: 10.1093/nar/gkh121. PubMed DOI PMC

Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., Pesseat S., Quinn A. F., Sangrador-Vegas A., Scheremetjew M., Yong S.-Y., Lopez R., Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. doi: 10.1186/1471-2105-4-41. PubMed DOI PMC

Finn Robert D., Bateman Alex, Clements Jody, Coggill Penelope, Eberhardt Ruth Y., Eddy Sean R., Heger Andreas, Hetherington Kirstie, Holm Liisa, Mistry Jaina, Sonnhammer Erik L. L., Tate John, Punta Marco. Pfam: the protein families database. Nucleic Acids Research. 2013;42(D1):D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature. 2003;424:741. doi: 10.1038/424741a. PubMed DOI

Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev. 2016;40:258–272. doi: 10.1093/femsre/fuv048. PubMed DOI PMC

Evans Jason, Sheneman Luke, Foster James. Relaxed Neighbor Joining: A Fast Distance-Based Phylogenetic Tree Construction Method. Journal of Molecular Evolution. 2006;62(6):785–792. doi: 10.1007/s00239-005-0176-2. PubMed DOI

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019; Available from: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz239/5424068. PubMed DOI PMC

Weese D, Holtgrewe M, Reinert K. RazerS 3: faster, fully sensitive read mapping. Bioinformatics. 2012;28:2592–2599. doi: 10.1093/bioinformatics/bts505. PubMed DOI

Huang Y, Gilna P, Li W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics. 2009;25:1338–1340. doi: 10.1093/bioinformatics/btp161. PubMed DOI PMC

Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters

. 2024 Mar 27 ; 12 (1) : 65. [epub] 20240327

Flexible genomic island conservation across freshwater and marine Methylophilaceae

. 2024 Jan 08 ; 18 (1) : .

Isolation of phages infecting the abundant freshwater Actinobacteriota order 'Ca. Nanopelagicales'

. 2023 Jun ; 17 (6) : 943-946. [epub] 20230324

High-resolution metagenomic reconstruction of the freshwater spring bloom

. 2023 Jan 26 ; 11 (1) : 15. [epub] 20230126

Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores

. 2023 Jan ; 17 (1) : 84-94. [epub] 20221007

The Evolutionary Kaleidoscope of Rhodopsins

. 2022 Oct 26 ; 7 (5) : e0040522. [epub] 20220919

Bacteriophage therapy in aquaculture: current status and future challenges

. 2022 Aug ; 67 (4) : 573-590. [epub] 20220319

Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR

. 2022 Jun 04 ; 10 (1) : 84. [epub] 20220604

Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms

. 2021 Dec 22 ; 6 (6) : e0066121. [epub] 20211124

Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes

. 2021 Mar 16 ; 6 (2) : . [epub] 20210316

Correction to: Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics

. 2020 Mar 19 ; 8 (1) : 40. [epub] 20200319

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...