Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
27505348
PubMed Central
PMC5315475
DOI
10.1038/ismej.2016.110
PII: ismej2016110
Knihovny.cz E-resources
- MeSH
- Actinobacteria classification genetics virology MeSH
- Bacteriophages classification genetics isolation & purification MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Metagenomics MeSH
- Fresh Water microbiology virology MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.
See more in PubMed
Alam MS, Garg SK, Agrawal P. (2007). Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 63: 1414–1431. PubMed
Allgaier M, Grossart HP. (2006). Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. App Environ Microbiol 72: 3489–3497. PubMed PMC
Arnold JW, Koudelka GB. (2014). The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ Microbiol 16: 454–466. PubMed
Barth H, Aktories K, Popoff MR, Stiles BG. (2004). Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68: 373–402. PubMed PMC
Breitbart M, Miyake JH, Rohwer F. (2004). Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett 236: 249–256. PubMed
Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S et al. (2006). Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett 261: 141–149. PubMed
Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML et al. (2005). The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187: 1091–1104. PubMed PMC
Chenard C, Chan AM, Vincent WF, Suttle CA. (2015). Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME J 9: 2046–2058. PubMed PMC
Dutilh BE, Noriko CW, McNair K, Sanchez SE, Silva GGZ, Boling L et al. (2014). A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5: 4498. PubMed PMC
Garcia-Heredia I, Martin-Cuadrado A-B, Mojica FJ, Santos F, Mira A, Antón J et al. (2012). Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PloS ONE 7: e33802. PubMed PMC
Ghai R, McMahon KD, Rodriguez-Valera F. (2012). Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep 4: 29–35. PubMed
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. (2013). Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3: 2471. PubMed PMC
Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A et al. (2000). Comparative 16 S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66: 5053–5065. PubMed PMC
Gomez JE, Bishai WR. (2000). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci USA 97: 8554–8559. PubMed PMC
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627–2630. PubMed PMC
Lainhart W, Stolfa G, Koudelka GB. (2009). Shiga Toxin as a Bacterial Defense against a Eukaryotic Predator, Tetrahymena thermophila. J Bacteriol 191: 5116–5122. PubMed PMC
Mizuno CM, Rodriguez-Valera F, Garcia-Heredia I, Martin-Cuadrado AB, Ghai R. (2013. a). Reconstruction of novel cyanobacterial siphovirus genomes from Mediterranean metagenomic fosmids. Appl Environ Microbiol 79: 688–695. PubMed PMC
Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. (2013. b). Expanding the marine virosphere using metagenomics. PLoS Genet 9: e1003987. PubMed PMC
Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF. (2008). Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J Bacteriol 190: 2172–2182. PubMed PMC
Obrien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. (1984). Shiga-Like Toxin-Converting Phages from Escherichia-Coli Strains That Cause Hemorrhagic Colitis or Infantile Diarrhea. Science 226: 694–696. PubMed
Rybniker J, Nowag A, van Gumpel E, Nissen N, Robinson N, Plum G et al. (2010). Insights into the function of the WhiB-like protein of mycobacteriophage TM4-a transcriptional inhibitor of WhiB2. Mol Microbiol 77: 642–657. PubMed
Salcher MM, Pernthaler J, Posch T. (2010). Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr 55: 846–856.
Skvortsov T, de Leeuwe C, Quinn JP, McGrath JW, Allen CC, McElarney Y et al. (2016). Metagenomic characterisation of the viral community of Lough Neagh, the largest freshwater lake in Ireland. PloS One 11: e0150361. PubMed PMC
Smith JM. (1976). Commentary: group selection. Q Rev Biol 51: 277–283.
Van Dessel W, Van Mellaert L, Liesegang H, Raasch C, De Keersmaeker S, Geukens N et al. (2005). Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB. Virology 331: 325–337. PubMed
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF et al. (2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71: 495–548. PubMed PMC
Waldor MK, Mekalanos JJ. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914. PubMed
Yoshida T, Nagasaki K, Takashima Y, Shirai Y, Tomaru Y, Takao Y et al. (2008). Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 190: 1762–1772. PubMed PMC
Isolation of phages infecting the abundant freshwater Actinobacteriota order 'Ca. Nanopelagicales'
High-resolution metagenomic reconstruction of the freshwater spring bloom
Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics
Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria