Comprehensive molecular-isotopic characterization of archaeal lipids in the Black Sea water column and underlying sediments
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
EXC-2077-390741603
Deutsche Forschungsgemeinschaft
Hi616-14-1
Deutsche Forschungsgemeinschaft
247153
European Research Council grant DARCLIFE
201504910730
Chinese Scholarship Council (CSC)
Bremen International Graduate School for Marine Sciences (GLOMAR)
247153
European Research Council - International
PubMed
38465505
DOI
10.1111/gbi.12589
Knihovny.cz E-zdroje
- Klíčová slova
- archaea, core lipids, intact polar lipids, lipid sources, lipid turnover, lipidomics, stable carbon isotope,
- MeSH
- Archaea * chemie MeSH
- geologické sedimenty chemie MeSH
- glycerol MeSH
- glycerylethery * MeSH
- lipidy chemie MeSH
- mořská voda chemie MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Černé moře MeSH
- Názvy látek
- crenarchaeol MeSH Prohlížeč
- glycerol MeSH
- glycerylethery * MeSH
- lipidy MeSH
- voda * MeSH
The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (δ13 C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative δ13 C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable δ13 C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86 , CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
Biology Centre CAS Soil and Water Research Infrastructure České Budějovice Czechia
Faculty of Geosciences University of Bremen Bremen Germany
Faculty of Science University of South Bohemia České Budějovice Czechia
MARUM Center for Marine Environmental Sciences University of Bremen Bremen Germany
Zobrazit více v PubMed
Alfken, S., Wörmer, L., Lipp, J. S., Wendt, J., Schimmelmann, A., & Hinrichs, K.-U. (2020). Mechanistic insights into molecular proxies through comparison of subannually resolved sedimentary records with instrumental water column data in the Santa Barbara basin, southern California. Paleoceanography and Paleoclimatology, 35, e2020PA004076.
Arthur, M. A., & Sageman, B. B. (1994). MARINE BLACK SHALES: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499-551.
Becker, K. W., Elling, F. J., Schröder, J. M., Lipp, J. S., Goldhammer, T., Zabel, M., Elvert, M., Overmann, J., & Hinrichs, K.-U. (2018). Isoprenoid quinones resolve the stratification of redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the black sea. Applied and Environmental Microbiology, 84, e02736-17.
Becker, K. W., Elling, F. J., Yoshinaga, M. Y., Söllinger, A., Urich, T., & Hinrichs, K.-U. (2016). Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens. Applied and Environmental Microbiology, 82, 4505-4516.
Besseling, M. A., Hopmans, E. C., Bale, N. J., Schouten, S., Damsté, J. S. S., & Villanueva, L. (2020). The absence of intact polar lipid-derived GDGTs in marine waters dominated by marine group II: Implications for lipid biosynthesis in archaea. Scientific Reports, 10, 294.
Biddle, J. F., Lipp, J. S., Lever, M. A., Lloyd, K. G., Sørensen, K. B., Anderson, R., Fredricks, H. F., Elvert, M., Kelly, T. J., Schrag, D. P., Sogin, M. L., Brenchley, J. E., Teske, A., House, C. H., & Hinrichs, K.-U. (2006). Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 103, 3846-3851.
Blumenberg, M., Seifert, R., Reitner, J., Pape, T., & Michaelis, W. (2004). Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America, 101, 11111-11116.
Boon, J. J., Rijpstra, W. I. C., de Lange, F., de Leeuw, J. W., Yoshioka, M., & Shimizu, Y. (1979). Black Sea sterol-A molecular fossil for dinoflagellate blooms. Nature, 277, 125-127.
Chappe, B., Michaelis, W., Albrecht, P., & Ourisson, G. (1979). Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften, 66, 522-523.
Chuang, P.-C., Dale, A. W., Heuer, V. B., Hinrichs, K.-U., & Zabel, M. (2021). Coupling of dissolved organic carbon, sulfur and iron cycling in Black Sea sediments over the Holocene and the late Pleistocene: Insights from an empirical dynamic model. Geochimica et Cosmochimica Acta, 307, 302-318.
Coffinet, S., Meador, T. B., Mühlena, L., Becker, K. W., Schröder, J., Zhu, Q.-Z., Lipp, J. S., Heuer, V. B., Crump, M. P., & Hinrichs, K.-U. (2020). Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs). Biogeosciences, 17, 317-330.
Coolen, M. J. L., Abbas, B., Bleijswijk, J. V., Hopmans, E. C., Kuypers, M. M. M., Wakeham, S. G., & Sinninghe Damsté, J. S. (2007). Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology, 9, 1001-1016.
Degens, E. T., & Ross, D. A. (1972). Chronology of the Black Sea over the last 25,000 years. Chemical Geology, 10, 1-16.
Eckert, S., Brumsack, H.-J., Severmann, S., Schnetger, B., März, C., & Fröllje, H. (2013). Establishment of euxinic conditions in the Holocene Black Sea. Geology, 41, 431-434.
Elling, F. J., Gottschalk, J., Doeana, K. D., Kusch, S., Hurley, S. J., & Pearson, A. (2019). Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion. Nature Communications, 10, 4519.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J., & Hinrichs, K.-U. (2014). Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochimica et Cosmochimica Acta, 141, 579-597.
Elling, F. J., Könneke, M., Mußmann, M., Greve, A., & Hinrichs, K.-U. (2015). Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates. Geochimica et Cosmochimica Acta, 171, 238-255.
Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B., Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I., Herndl, G. J., Schleper, C., & Hinrichs, K.-U. (2017). Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environmental Microbiology, 19, 2681-2700.
Elvert, M., Hopmans, E. C., Treude, T., Boetius, A., & Suess, E. (2005). Spatial variations of methanotrophic consortia at cold methane seeps: Implications from a high-resolution molecular and isotopic approach. Geobiology, 3, 195-209.
Elvert, M., Suess, E., Greinert, J., & Whiticar, M. J. (2000). Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, 31, 1175-1187.
Evans, T. W., Coffinet, S., Könneke, M., Lipp, J. S., Becker, K. W., Elvert, M., Heuer, V., & Hinrichs, K.-U. (2019). Assessing the carbon assimilation and production of benthic archaeal lipid biomarkers using lipid-RIP. Geochimica et Cosmochimica Acta, 265, 431-442.
Freeman, K. H., & Wakeham, S. G. (1992). Variations in the distributions and isotopic composition of alkenones in Black Sea particles and sediments. Organic Geochemistry, 19, 277-285.
Freeman, K. H., Wakeham, S. G., & Hayes, J. M. (1994). Predictive isotopic biogeochemistry: Hydrocarbons from anoxic marine basins. Organic Geochemistry, 21, 629-644.
Fry, B., Jannasch, H. W., Molyneaux, S. J., Wirsen, C. O., Muramoto, J. A., & King, S. (1991). Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep Sea Research Part A. Oceanographic Research Papers, 38, S1003-S1019.
Hernández-Sánchez, M. T., Woodward, E. M. S., Taylor, K. W. R., Henderson, G. M., & Pancost, R. D. (2014). Variations in GDGT distributions through the water column in the south East Atlantic Ocean. Geochimica et Cosmochimica Acta, 132, 337-348.
Heuer, V. B., Pohlman, J. W., Torres, M. E., Elvert, M., & Hinrichs, K.-U. (2009). The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia margin. Geochimica et Cosmochimica Acta, 73, 3323-3336.
Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & DeLong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe Damst ́e, J. S., & Schouten, S. (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Organic Geochemistry, 37, 1036-1041.
Hurley, S. J., Close, H. G., Elling, F. J., Jasper, C. E., Gospodinova, K., McNichol, A. P., & Pearson, A. (2019). CO2-dependent carbon isotope fractionation in archaea, part II: The marine water column. Geochimica et Cosmochimica Acta, 261, 383-395.
Jahn, U., Summons, R., Sturt, H., Grosjean, E., & Huber, H. (2004). Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Archives of Microbiology, 182, 404-413.
Kessler, J. D., Reeburgh, W. S., Southon, J., Seifert, R., Michaelis, W., & Tyler, S. C. (2006). Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth and Planetary Science Letters, 243, 366-375.
Kim, J.-H., Schouten, S., Rodrigo-Gámiz, M., Rampen, S., Marino, G., Huguet, C., Helmke, P., Buscail, R., Hopmans, E. C., Pross, J., Sangiorgi, F., Middelburg, J. B. M., & Sinninghe Damsté, J. S. (2015). Influence of deep-water derived isoprenoid tetraether lipids on the TEX86H paleothermometer in the Mediterranean Sea. Geochimica et Cosmochimica Acta, 150, 125-141.
King, L. L., Pease, T. K., & Wakeham, S. G. (1998). Archaea in Black Sea water column particulate matter and sediments-Evidence from ether lipid derivatives. Organic Geochemistry, 28, 677-688.
Koga, Y., Akagawa-Matsushita, M., Ohga, M., & Nishihara, M. (1993). Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Systematic and Applied Microbiology, 16, 342-351.
Koga, Y., & Nakano, M. (2008). A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny. Systematic and Applied Microbiology, 31, 169-182.
Koga, Y., Nishihara, M., Morii, H., & Akagawa-Matsushita, M. (1993). Ether polar lipids of methanogenic bacteria: Structures, comparative aspects, and biosyntheses. Microbiology and Molecular Biology Reviews, 57, 164-182.
Könneke, M., Schubert, D. M., Brown, P. C., Hügler, M., Standfest, S., Schwander, T., Borzyskowski, L. S., von Erb, T. J., Stahl, D. A., & Berg, I. A. (2014). Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 111, 8239-8244.
Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., & Damsté, J. S. S. (2001). Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science, 293, 92-95.
Kuypers, M. M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B., Kuenen, J. G., Sinninghe, D. J. S., Strous, M., & Jetten, M. S. M. (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422, 608-611.
Kwiecien, O., Arz, H. W., Lamy, F., Wulf, S., Bahr, A., Röhl, U., & Haug, G. H. (2008). Estimated reservoir ages of the Black Sea since the last glacial. Radiocarbon, 50, 99-118.
Lengger, S. K., Hopmans, E. C., Sinninghe Damsté, J. S., & Schouten, S. (2014). Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru margin). Geobiology, 12, 212-220.
Lincoln, S. A., Wai, B., Eppley, J. M., Church, M. J., Summons, R. E., & DeLong, E. F. (2014). Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 111, 9858-9863.
Lipp, J. S., Morono, Y., Inagaki, F., & Hinrichs, K.-U. (2008). Significant contribution of archaea to extant biomass in marine subsurface sediments. Nature, 454, 991-994.
Liu, X., Lipp, J. S., & Hinrichs, K.-U. (2011). Distribution of intact and core GDGTs in marine sediments. Organic Geochemistry, 42, 368-375.
Liu, X.-L., Birgel, D., Elling, F. J., Sutton, P. A., Lipp, J. S., Zhu, R., Zhang, C., Könneke, M., Peckmann, J., Rowland, S. J., Summons, R. E., & Hinrichs, K.-U. (2016). From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers. Geochimica et Cosmochimica Acta, 183, 138-152.
Liu, X.-L., Lipp, J. S., Birgel, D., Summons, R. E., & Hinrichs, K.-U. (2018). Predominance of parallel glycerol arrangement in archaeal tetraethers from marine sediments: Structural features revealed from degradation products. Organic Geochemistry, 115, 12-23.
Lloyd, K. G., Schreiber, L., Petersen, D. G., Kjeldsen, K. U., Lever, M. A., Steen, A. D., Stepanauskas, R., Richter, M., Kleindienst, S., Lenk, S., Schramm, A., & Jørgensen, B. B. (2013). Predominant archaea in marine sediments degrade detrital proteins. Nature, 496, 215-218.
Ma, C., Coffinet, S., Lipp, J. S., Hinrichs, K.-U., & Zhang, C. (2020). Marine group II Euryarchaeota contribute to the archaeal lipid pool in northwestern Pacific Ocean surface waters. Frontiers in Microbiology, 11, 1034.
Meador, T. B., Bowles, M., Lazar, C. S., Zhu, C., Teske, A., & Hinrichs, K.-U. (2015). The archaeal lipidome in estuarine sediment dominated by members of the miscellaneous crenarchaeotal group. Environmental Microbiology, 17, 2441-2458.
Meador, T. B., Zhu, C., Elling, F. J., Könneke, M., & Hinrichs, K.-U. (2014). Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin. Organic Geochemistry, 69, 70-75.
Merkel, A. Y., Korneeva, V. A., Tarnovetskii, I. Y., Bryukhanov, A. L., Chasovnikov, V. K., Taranov, E. A., Toshchakov, S. V., & Pimenov, N. V. (2015). Structure of the archaeal community in the Black Sea photic zone. Microbiology, 84, 570-576.
Nguyen, T. B., Topçuoğlu, B. D., Holden, J. F., LaRowe, D. E., & Lang, S. Q. (2020). Lower hydrogen flux leads to larger carbon isotopic fractionation of methane and biomarkers during hydrogenotrophic methanogenesis. Geochimica et Cosmochimica Acta, 271, 212-226.
Pancost, R. D., Hopmans, E. C., & Sinninghe Damsté, J. S. (2001). Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochimica et Cosmochimica Acta, 65, 1611-1627.
Pearson, A., Hurley, S. J., Walter, S. R. S., Kusch, S., Lichtin, S., & Zhang, Y. G. (2016). Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments. Geochimica et Cosmochimica Acta, 181, 18-35.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S.-J., Rhee, S.-K., Francis, C. A., Schouten, S., & Sinninghe Damsté, J. S. (2011). Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Applied and Environmental Microbiology, 77, 3468-3477.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl, D. A., & Ingalls, A. E. (2015). Confounding effects of oxygen and temperature on the TEX86 signature of marine thaumarchaeota. Proceedings of the National Academy of Sciences of the United States of America, 112, 10979-10984.
Rattanasriampaipong, R., Zhang, Y. G., Pearson, A., Hedlund, B. P., & Zhang, S. (2022). Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences of the United States of America, 119, e2123193119.
Ren, M., Feng, X., Huang, Y., Wang, H., Hu, Z., Clingenpeel, S., Swan, B. K., Fonseca, M. M., Posada, D., Stepanauskas, R., Hollibaugh, J. T., Foster, P. G., Woyke, T., & Luo, H. (2019). Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. The ISME Journal, 13, 2150-2161.
Repeta, D. J., Simpson, D. J., Jorgensen, B. B., & Jannasch, H. W. (1989). Evidence for anoxygenic photosynthesis from the distribution of bacterio-chlorophylls in the Black Sea. Nature, 342, 69-72.
Schlitzer, R. (2015). Data analysis and visualization with ocean data view. CMOS Bulletin SCMO, 43(1), 9-13.
Schmidt, F., Koch, B. P., Goldhammer, T., Elvert, M., Witt, M., Lin, Y.-S., Wendt, J., Zabel, M., Heuer, V. B., & Hinrichs, K.-U. (2017). Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments. Geochimica et Cosmochimica Acta, 207, 57-80.
Schoon, P. L., Heilmann-Clausen, C., Pagh, S. B., Sluijs, A., Sinninghe Damsté, J. S., & Schouten, S. (2013). Recognition of early Eocene global carbon isotope excursions using lipids of marine thaumarchaeota. Earth and Planetary Science Letters, 373, 160-168.
Schouten, S., Hopmans, E. C., Pancost, R. D., & Sinninghe Damsté, J. S. (2000). Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 97, 14421-14426.
Schouten, S., Hopmans, E. C., Schefuß, E., & Sinninghe Damsté, J. S. (2002). Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204, 265-274.
Schouten, S., Hopmans, E. C., & Sinninghe Damsté, J. S. (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54, 19-61.
Schouten, S., Middelburg, J. J., Hopmans, E. C., & Sinninghe Damsté, J. S. (2010). Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach. Geochimica et Cosmochimica Acta, 74, 3806-3814.
Schouten, S., Wakeham, S. G., & Sinninghe Damsté, J. S. (2001). Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Organic Geochemistry, 32, 1277-1281.
Schröder, J. M. (2015). Intact polar lipids in marine sediments: Improving analytical protocols and assessing planktonic and benthic sources. Bremen, Universität Bremen, Diss., 2015.
Schubert, C. J., Coolen, M. J. L., Neretin, L. N., Schippers, A., Abbas, B., Durisch-Kaiser, E., Wehrli, B., Hopmans, E. C., Sinninghe Damsté, J. S., Wakeham, S., & Kuypers, M. M. M. (2006). Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8, 1844-1856.
Schubotz, F., Lipp, J. S., Elvert, M., & Hinrichs, K.-U. (2011). Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano. Geochimica et Cosmochimica Acta, 75, 4399-4415.
Schubotz, F., Wakeham, S. G., Lipp, J. S., Fredricks, H. F., & Hinrichs, K.-U. (2009). Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environmental Microbiology, 11, 2720-2734.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M.-Y., Kim, J.-G., Rhee, S.-K., Stieglmeier, M., & Schleper, C. (2012). Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group i.1a and i.1b thaumarchaeota in soil. Applied and Environmental Microbiology, 78, 6866-6874.
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C. T., & Geenevasen, J. A. J. (2002). Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research, 43, 1641-1651.
Sollai, M., Villanueva, L., Hopmans, E. C., Reichart, G.-J., & Sinninghe Damsté, J. S. (2019). A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. Geobiology, 17, 91-109.
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., & Schleper, C. (2014). Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. The ISME Journal, 8, 1135-1146.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., & Hinrichs, K.-U. (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-New biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617-628.
Summons, R. E., Franzmann, P. D., & Nichols, P. D. (1998). Carbon isotopic fractionation associated with methylotrophic methanogenesis. Organic Geochemistry, 28, 465-475.
Takano, Y., Chikaraishi, Y., Ogawa, N. O., Nomaki, H., Morono, Y., Inagaki, F., Kitazato, H., Hinrichs, K.-U., & Ohkouchi, N. (2010). Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nature Geoscience, 3, 858-861.
Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., & Pancost, R. D. (2013). Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST reconstructions. Global and Planetary Change, 108, 158-174.
Tissot, B. P., & Welte, D. H. (1984). Production and accumulation of organic matter the organic carbon cycle. In B. P. Tissot & D. H. Welte (Eds.), Petroleum formation and occurrence (pp. 3-13). Springer.
Villanueva, L., Sinninghe Damsté, J. S., & Schouten, S. (2014). A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Reviews. Microbiology, 12, 438-448.
Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., SPMkalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. (2019). Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5, eaaw4108.
Wakeham, S. G. (1989). Reduction of stenols to stanols in particulate matter at oxic-anoxic boundaries in sea water. Nature, 342, 787-790.
Wakeham, S. G., Amann, R., Freeman, K. H., Hopmans, E. C., Jørgensen, B. B., Putnam, I. F., Schouten, S., Sinninghe Damsté, J. S., Talbot, H. M., & Woebken, D. (2007). Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry, 38, 2070-2097.
Wakeham, S. G., Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. (2004). Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: A comparative study of the Black Sea and Cariaco Basin. Chemical Geology, 205, 427-442.
Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. (2003). Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta, 67, 1359-1374.
Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C., & Pancost, R. D. (2010). Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeosciences, 7, 2959-2973.
Wörmer, L., Elvert, M., Fuchser, J., Lipp, J. S., Buttigieg, P. L., Zabel, M., & Hinrichs, K.-U. (2014). Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples. Proceedings of the National Academy of Sciences of the United States of America, 111, 15669-15674.
Wörmer, L., Lipp, J. S., Schröder, J. M., & Hinrichs, K.-U. (2013). Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Organic Geochemistry, 59, 10-21.
Xie, S., Lipp, J. S., Wegener, G., Ferdelman, T. G., & Hinrichs, K.-U. (2013). Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. Proceedings of the National Academy of Sciences of the United States of America, 110, 6010-6014.
Zabel, M., Aiello, I., Becker, K., Braun, S., Broda, N., Dibke, C., Elvert, M., Gagen, E., Goldhammer, T., & Heuer, V. (2011). Biogeochemistry and methane hydrates of the Black Sea; oceanography of the Mediterranean; shelf sedimentation and cold water carbonates. RV Meteor Cruise Rep. M 84.
Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., & Noakes, J. E. (2011). Methane index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth and Planetary Science Letters, 307, 525-534.
Zhu, C., Lipp, J. S., Wörmer, L., Becker, K. W., Schröder, J., & Hinrichs, K.-U. (2013). Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol. Organic Geochemistry, 65, 53-62.
Zhu, C., Wakeham, S. G., Elling, F. J., Basse, A., Mollenhauer, G., Versteegh, G. J. M., Könneke, M., & Hinrichs, K.-U. (2016). Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea. Environmental Microbiology, 18, 4324-4336.
Zhu, Q.-Z., Elvert, M., Meador, T. B., Becker, K. W., Heuer, V. B., & Hinrichs, K. (2021). Stable carbon isotopic compositions of archaeal lipids constrain terrestrial, planktonic, and benthic sources in marine sediments. Geochimica et Cosmochimica Acta, 307, 319-337.
Zhu, Q.-Z., Wegener, G., Hinrichs, K.-U., & Elvert, M. (2022). Activity of ancillary heterotrophic community members in anaerobic methane-oxidizing cultures. Frontiers in Microbiology, 13, 912299.
Zhuang, G.-C., Heuer, V. B., Lazar, C. S., Goldhammer, T., Wendt, J., Samarkin, V. A., Elvert, M., Teske, A. P., Joye, S. B., & Hinrichs, K.-U. (2018). Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 224, 171-186.