Flexible genomic island conservation across freshwater and marine Methylophilaceae
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
19-23469S
Czech Science Foundation
KA131
University of South Bohemia, Faculty of Science, Department of Ecosystem Biology
116/2019/P
Grant Agency of the University of South Bohemia in České Budějovice
PubMed
38365254
PubMed Central
PMC10872708
DOI
10.1093/ismejo/wrad036
PII: 7513123
Knihovny.cz E-zdroje
- Klíčová slova
- Methylophilaceae, cultivation, genome-streamlined bacteria, genomic islands, genomic microdiversity, genomics,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genomové ostrovy MeSH
- jezera MeSH
- Methylophilaceae * MeSH
- Publikační typ
- časopisecké články MeSH
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
Department of Biological Sciences University of Southern California Los Angeles CA 90089 USA
Department of Geophysical Sciences University of Chicago Chicago IL 60637 USA
Faculty of Science University of South Bohemia 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J 2014;8:1553–65. 10.1038/ismej.2014.60. PubMed DOI PMC
Dufresne A, Garczarek L, Partensky F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 2005;6:R14. 10.1186/gb-2005-6-2-r14. PubMed DOI PMC
Rocap G, Larimer FW, Lamerdin J et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003;424:1042–7. 10.1038/nature01947. PubMed DOI
Giovannoni SJ, Tripp HJ, Givan S et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005;309:1242–5. 10.1126/science.1114057. PubMed DOI
Haro-Moreno JM, Rodriguez-Valera F, Rosselli R et al. Ecogenomics of the SAR11 clade. Environ Microbiol 2020;22:1748–63. 10.1111/1462-2920.14896. PubMed DOI PMC
Henson MW, Lanclos VC, Faircloth BC et al. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J 2018;12:1846–60. 10.1038/s41396-018-0092-2. PubMed DOI PMC
Salcher MM, Neuenschwander SM, Posch T et al. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J 2015;9:2442–53. 10.1038/ismej.2015.55. PubMed DOI PMC
Giovannoni SJ, Hayakawa DH, Tripp HJ et al. The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 2008;10:1771–82. 10.1111/j.1462-2920.2008.01598.x. PubMed DOI
Ghai R, Mizuno CM, Picazo A et al. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 2013;3:2471. 10.1038/srep02471. PubMed DOI PMC
López-Pérez M, Haro-Moreno JM, Iranzo J et al. Genomes of the “ Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria. mSystems 2020;5:e01041–20. 10.1128/mSystems.01041-20. PubMed DOI PMC
Kang I, Kim S, Islam MR et al. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep 2017;7:42252. 10.1038/srep42252. PubMed DOI PMC
Neuenschwander SM, Ghai R, Pernthaler J et al. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J 2018;12:185–98. 10.1038/ismej.2017.156. PubMed DOI PMC
Hahn MW, Schmidt J, Taipale SJ et al. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol 2014;64:3254–63. 10.1099/ijs.0.065292-0. PubMed DOI PMC
Pitt A, Schmidt J, Koll U et al. Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 2021;71:71. 10.1099/ijsem.0.004825. PubMed DOI
Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009;7:828–36. 10.1038/nrmicro2235. PubMed DOI
Rodriguez-Valera F, Martin-Cuadrado A-B, López-Pérez M. Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 2016;31:154–60. 10.1016/j.mib.2016.03.014. PubMed DOI
Kashtan N, Roggensack SE, Rodrigue S et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 2014;344:416–20. 10.1126/science.1248575. PubMed DOI
Woodhouse JN, Kinsela AS, Collins RN et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J 2016;10:1337–51. 10.1038/ismej.2015.218. PubMed DOI PMC
Morris RM, Longnecker K, Giovannoni SJ. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 2006;8:1361–70. 10.1111/j.1462-2920.2006.01029.x. PubMed DOI
Sekar R, Fuchs BM, Amann R et al. Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 2004;70:6210–9. 10.1128/AEM.70.10.6210-6219.2004. PubMed DOI PMC
Salcher MM, Schaefle D, Kaspar M et al. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J 2019;13:2764–77. 10.1038/s41396-019-0471-3. PubMed DOI PMC
Chiriac M, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2022;25:606–41. 10.1111/1462-2920.16313. PubMed DOI
Cabello-Yeves PJ, Rodriguez-Valera F. Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 2019;7:117. 10.1186/s40168-019-0731-5. PubMed DOI PMC
Salcher MM, Šimek K. Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology. Aquat Microb Ecol 2016;77:183–96. 10.3354/ame01796. DOI
Henson MW, Lanclos VC, Pitre DM et al. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol 2020;86(17):e00943-20. 10.1128/AEM.00943-20. PubMed DOI PMC
Henson MW, Pitre DM, Weckhorst JL et al. Correction for Henson et al., artificial seawater media facilitate cultivating members of the microbial majority from the Gulf of Mexico. mSphere 2016;1:e00028–16. 10.1128/mSphere.00124-16. PubMed DOI PMC
Šimek K, Nedoma J, Znachor P et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 2014;59:1477–92. 10.4319/lo.2014.59.5.1477. DOI
Prjibelski A, Antipov D, Meleshko D et al. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020;70(1):e102. 10.1002/cpbi.102. PubMed DOI
Huggett MJ, Hayakawa DH, Rappé MS. Genome sequence of strain HIMB624, a cultured representative from the OM43 clade of marine Betaproteobacteria. Stand Genomic Sci 2012;6:11–20. 10.4056/sigs.2305090. PubMed DOI PMC
Jimenez-Infante F, Ngugi DK, Vinu M et al. Comprehensive genomic analyses of the OM43 clade, including a novel species from the Red Sea, indicate ecotype differentiation among marine methylotrophs. Appl Environ Microbiol 2016;82:1215–26. 10.1128/AEM.02852-15. PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9. 10.1093/bioinformatics/btu153. PubMed DOI
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7(10):e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Tatusov RL, Natale DA, Garkavtsev IV et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001;29:22–8. 10.1093/nar/29.1.22. PubMed DOI PMC
Haft DH, Loftus BJ, Richardson DL et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 2001;29:41–3. 10.1093/nar/29.1.41. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30. 10.1093/nar/28.1.27. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016;428:726–31. 10.1016/j.jmb.2015.11.006. PubMed DOI
Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017;11:2399–406. 10.1038/ismej.2017.113. PubMed DOI PMC
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–31. 10.1073/pnas.0906412106. PubMed DOI PMC
Löytynoja A. Phylogeny-aware alignment with PRANK. In: Russel, D. (eds) Multiple Sequence Alignment Methods. Humana Press, Totowa, NJ. Methods in Molecular Biology; 2014, vol 1079, 155–70. 10.1007/978-1-62703-646-7_10. PubMed DOI
Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010;10:210. 10.1186/1471-2148-10-210. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–74. 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TK et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14:587–9. 10.1038/nmeth.4285. PubMed DOI PMC
Treangen TJ, Ondov BD, Koren S et al. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014;15:524. 10.1186/s13059-014-0524-x. PubMed DOI PMC
Drost H-G, Gabel A, Grosse I et al. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol Evol 2015;32:1221–31. 10.1093/molbev/msv012. PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658–9. 10.1093/bioinformatics/btl158. PubMed DOI
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013;29:2933–5. 10.1093/bioinformatics/btt509. PubMed DOI PMC
Néron B, Littner E, Haudiquet M et al. IntegronFinder 2.0: identification and analysis of integrons across bacteria, with a focus on antibiotic resistance in Klebsiella. Microorganisms 2022;10:700. 10.3390/microorganisms10040700. PubMed DOI PMC
Chiriac M-C, Bulzu P-A, Andrei A-S et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome 2022;10:84. 10.1186/s40168-022-01274-3. PubMed DOI PMC
Kavagutti VS, Bulzu P-A, Chiriac CM et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 2023;11:15. 10.1186/s40168-022-01451-4. PubMed DOI PMC
Bushnell B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Berkeley: Lawrence Berkeley National Lab. (LBNL), 2014
Kavagutti VS, Andrei A-Ş, Mehrshad M et al. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 2019;7:135. 10.1186/s40168-019-0752-0. PubMed DOI PMC
Linz AM, He S, Stevens SLR et al. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 2018;6:e6075. 10.7717/peerj.6075. PubMed DOI PMC
Powers LC, Luek JL, Schmitt-Kopplin P et al. Seasonal changes in dissolved organic matter composition in Delaware Bay, USA in March and August 2014. Org Geochem 2018;122:87–97. 10.1016/j.orggeochem.2018.05.005. DOI
Ramachandran A, McLatchie S, Walsh DA. A novel freshwater to marine evolutionary transition revealed within Methylophilaceae bacteria from the Arctic Ocean. MBio 2021;12:e01306–21. 10.1128/mBio.01306-21. PubMed DOI PMC
Sunagawa S, Coelho LP, Chaffron S et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 2015;348:1261359. 10.1126/science.1261359. PubMed DOI
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017;35:1026–8. 10.1038/nbt.3988. PubMed DOI
Wang M, Kong L. pblat: a multithread blat algorithm speeding up aligning sequences to genomes. BMC Bioinformatics 2019;20:28. 10.1186/s12859-019-2597-8. PubMed DOI PMC
Alzola CF, Harrell F. An Introduction to S and the Hmisc and Design Libraries. 2006. Departement of biostatistics, Vanderbilt University. biostat. mc. vanderbuilt. edu/RS/sintro. pdf (accessed 2013/05). https://cran.r-project.org/doc/contrib/Alzola+Harrell-Hmisc-Design-Intro.pdf.
R Core Team. R Core Team . R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2022, https://www.R-project.org/.
Cheng C, Thrash JC. Sparse-growth-curve: a computational pipeline for parsing cellular growth curves with low temporal resolution. Microbiol Resour Announc 2021;10:e00296–21. 10.1128/MRA.00296-21. PubMed DOI PMC
Hackl T, Laurenceau R, Ankenbrand MJ et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023;186:47–62.e16. 10.1016/j.cell.2022.12.006. PubMed DOI
Samaluru H, SaiSree L, Reddy M. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 2007;189:8044–52. 10.1128/JB.00773-07. PubMed DOI PMC
Mizuno T, Debnath A, Miyoshi S et al. Hemolysin of vibrio species. Microorganisms. IntechOpen; 2019. 10.5772/intechopen.88920. DOI
Aono R, Negishi T, Aibe K et al. Mapping of organic solvent tolerance gene ostA in Escherichia coli K-12. Biosci Biotechnol Biochem 1994;58:1231–5. 10.1271/bbb.58.1231. PubMed DOI
Benson SA, Decloux A. Isolation and characterization of outer membrane permeability mutants in Escherichia coli K-12. J Bacteriol 1985;161:361–7. 10.1128/jb.161.1.361-367.1985. PubMed DOI PMC
Sampson BA, Misra R, Benson SA. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 1989;122:491–501. 10.1093/genetics/122.3.491. PubMed DOI PMC
Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 2012;6:330–42. 10.1038/ismej.2011.113. PubMed DOI PMC
Eiler A, Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 2004;6:1228–43. 10.1111/j.1462-2920.2004.00657.x. PubMed DOI
Salcher MM, Pernthaler J, Frater N et al. Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 2011;56:2027–39. 10.4319/lo.2011.56.6.2027. DOI
Gifford SM, Becker JW, Sosa OA et al. Quantitative transcriptomics reveals the growth- and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio 2016;7(6):e01279–16. 10.1128/mbio.01279-16. PubMed DOI PMC
Carlson CA, Morris R, Parsons R et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 2009;3:283–95. 10.1038/ismej.2008.117. PubMed DOI
Grote J, Thrash JC, Huggett MJ et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 2012;3(5):e00252–12. 10.1128/mBio.00252-12. PubMed DOI PMC
López-Pérez M, Rodriguez-Valera F. Pangenome evolution in the marine bacterium Alteromonas. Genome Biology and Evolution 2016;8:1556–70. 10.1093/gbe/evw098. PubMed DOI PMC
López-Pérez M, Jayakumar JM, Haro-Moreno JM et al. Evolutionary model of cluster divergence of the emergent marine pathogen Vibrio vulnificus: from genotype to ecotype. MBio 2019;10:e02852–18. 10.1128/mBio.02852-18. PubMed DOI PMC
Hoetzinger M, Pitt A, Huemer A et al. Continental-scale gene flow prevents allopatric divergence of pelagic freshwater bacteria. Genome Biology and Evolution 2021;13:evab019. 10.1093/gbe/evab019. PubMed DOI PMC
Hoetzinger M, Schmidt J, Pitt A et al. Polynucleobacter paneuropaeus sp. nov., characterized by six strains isolated from freshwater lakes located along a 3000 km north–south cross-section across Europe. Int J Syst Evol Microbiol 2019;69:203–13. 10.1099/ijsem.0.003130. PubMed DOI PMC
Hoetzinger M, Schmidt J, Jezberová J et al. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol 2017;83(3):e02266–16. 10.1128/AEM.02266-16. PubMed DOI PMC
Okazaki Y, Nakano S, Toyoda A et al. Long-read-resolved, ecosystem-wide exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes. mSystems 2022;7:e00433–22. 10.1128/msystems.00433-22. PubMed DOI PMC
Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 2013;29:170–5. 10.1016/j.tig.2012.12.006. PubMed DOI PMC
Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 2000;3:362–77. 10.1046/j.1461-0248.2000.00161.x. DOI
Mann NH. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 2003;27:17–34. 10.1016/S0168-6445(03)00016-0. PubMed DOI
Hussain FA, Dubert J, Elsherbini J et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021;374:488–92. 10.1126/science.abb1083. PubMed DOI
Piel D, Bruto M, Labreuche Y et al. Phage–host coevolution in natural populations. Nat Microbiol 2022;7:1075–86. 10.1038/s41564-022-01157-1. PubMed DOI
Choi SC, Rasmussen MD, Hubisz MJ et al. Replacing and additive horizontal gene transfer in Streptococcus. Mol Biol Evol 2012;29:3309–20. 10.1093/molbev/mss138. PubMed DOI PMC
Cuadros-Orellana S, Martin-Cuadrado A-B, Legault B et al. Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J 2007;1:235–45. 10.1038/ismej.2007.35. PubMed DOI
Hou Y-M. Transfer RNAs and pathogenicity islands. Trends Biochem Sci 1999;24:295–8. 10.1016/S0968-0004(99)01428-0. PubMed DOI
Juhas M, van der Meer JR, Gaillard M et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009;33:376–93. 10.1111/j.1574-6976.2008.00136.x. PubMed DOI PMC
López-Pérez M, Martin-Cuadrado A-B, Rodriguez-Valera F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014;5:147. PubMed PMC
Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 2006;4:608–20. 10.1038/nrmicro1462. PubMed DOI
Schäffer C, Messner P. Glycobiology of surface layer proteins. Biochimie 2001;83:591–9. 10.1016/S0300-9084(01)01299-8. PubMed DOI
Global freshwater distribution of Telonemia protists