Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BBS/E/J/00000150
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000PR9790
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36797319
PubMed Central
PMC9935904
DOI
10.1038/s41467-023-36503-2
PII: 10.1038/s41467-023-36503-2
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny diaminové * metabolismus MeSH
- genomika MeSH
- Lathyrus * genetika metabolismus MeSH
- neurotoxiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny diaminové * MeSH
- neurotoxiny MeSH
- oxalyldiaminopropionic acid MeSH Prohlížeč
Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, β-L-oxalyl-2,3-diaminopropionic acid (β-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce β-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.
Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
Department of Biology Massachusetts Institute of Technology Cambridge MA 02139 USA
Earlham Institute Norwich Research Park Colney Lane Norwich NR4 7UZ UK
Future Food Beacon of Excellence University of Nottingham NG7 2RD Nottingham UK
Global Crop Diversity Trust Platz der Vereinten Nationen 7 53113 Bonn Germany
John Innes Centre Norwich Research Park Colney Lane Norwich NR4 7UH UK
National Institute of Agricultural Botany 93 Laurence Weaver Road Cambridge CB3 0LE UK
Queensland University of Technology 2 George St Brisbane City QLD 4000 Australia
School of Life Sciences University of Nottingham University Park Nottingham NG7 2RD UK
School of Traditional Chinese Medicine Capital Medical University You An Men Beijing 100069 PR China
Whitehead Institute for Biomedical Research Cambridge MA 02142 USA
Zobrazit více v PubMed
Gil, J. D. B., Cohn, A. S., Duncan, J., Newton, P. & Vermeulen, S. The resilience of integrated agricultural systems to climate change. WIREs Clim. Change8, e461 (2017).10.1002/wcc.461 DOI
Mustafa, M. A., Mayes, S. & Massawe, F. Crop Diversification Through a Wider Use of Underutilised Crops: A Strategy to Ensure Food and Nutrition Security in the Face of Climate Change. in Sustainable Solutions for Food Security: Combating Climate Change by Adaptation (eds. Sarkar, A., Sensarma, S. R. & vanLoon, G. W.) 125–149 (Springer International Publishing, 2019). 10.1007/978-3-319-77878-5_7.
Mabhaudhi, T. et al. Prospects of orphan crops in climate change. Planta250, 695–708 (2019). 10.1007/s00425-019-03129-y PubMed DOI PMC
Chivenge, P., Mabhaudhi, T., Modi, A. & Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health12, 5685 (2015). 10.3390/ijerph120605685 PubMed DOI PMC
Yadav, S. S., Bejiga, G., Brink, M. & Belay, G. Lathyrus sativus L. PROTA4U vol. 2017 http://www.prota4u.org/search.asp (2006).
Campbell, C. G. Grass pea: Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops vol. 18 (International Plant Genetic Resources Institute, 1997).
Jiao, C.-J. J. et al. Factors affecting beta-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol.49, 543–549 (2011). 10.1016/j.fct.2010.04.050 PubMed DOI
Drouin, P., Prëvost, D. & Antoun, H. Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol. Ecol.32, 111–120 (2000). PubMed
Girma, A., Tefera, B. & Dadi, L. Grass pea and neurolathyrism: farmers’ perception on its consumption and protective measure in North Shewa, Ethiopia. Food Chem. Toxicol.49, 668–672 (2011). 10.1016/j.fct.2010.08.040 PubMed DOI
Zhelyazkova, T., Pavlov, D., Delchev, G. & Stoyanova, A. Productivity and yield stability of six grain legumes in the moderate climatic conditions in Bulgaria. Scientific Papers. Ser. A. Agron.LIX, 478–487 (2016).
Silvestre, S., de Sousa Araújo, S., Vaz Patto, M. C. & Marques da Silva, J. Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. J. Integr. plant Biol.56, 610–621 (2014). 10.1111/jipb.12186 PubMed DOI
Yang, H.-M. & Zhang, X.-Y. Considerations on the reintroduction of grass pea in China. Lathyrus lathyrism Newsl.4, 22–26 (2005).
Vaz Patto, M. C., Fernández‐Aparicio, M., Moral, A. & Rubiales, D. Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed.125, 308–310 (2006).10.1111/j.1439-0523.2006.01220.x DOI
Dufour, D. L. Assessing diet in populations at risk for konzo and neurolathyrism. Food Chem. Toxicol.49, 655–661 (2011). 10.1016/j.fct.2010.08.006 PubMed DOI
Kusama-Eguchi, K. et al. New insights into the mechanism of neurolathyrism: L-β-ODAP triggers [Ca2+]iaccumulation and cell death in primary motor neurons through transient receptor potential channels and metabotropic glutamate receptors. Food Chem. Toxicol.67, 113–122 (2014). 10.1016/j.fct.2014.02.021 PubMed DOI
Lambein, F., Travella, S., Kuo, Y.-H., Van Montagu, M. & Heijde, M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta10.1007/s00425-018-03084-0 (2019). PubMed
Kumar, S., Bejiga, G., Ahmed, S., Nakkoul, H. & Sarker, A. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem. Toxicol.49, 589–600 (2011). 10.1016/j.fct.2010.06.051 PubMed DOI
Sawant, P. V., Jayade, V. S. & Patil, S. R. Line × tester analysis in Lathyrus. J. Food Legumes24, 41–45 (2011).
Chakrabarti, A., Santha, I. M. & Mehta, S. L. Molecular characterisation of low ODAP somaclones of Lathyrus sativus. J. Plant Biochem. Biotechnol.8, 25–29 (1999).10.1007/BF03263053 DOI
Santha, I. M. & Mehta, S. L. Development of low ODAP somaclones of Lathyrus sativus. Lathyrus lathyrism Newsletter2, 42 (2001).
Tsegaye, D., Tadesse, W. & Bayable, M. Performance of grass pea (Lathyrus sativus L.) somaclones at Adet, northwest Ethiopia. Lathyrus lathyrism Newsletter 4, 5–6 (2005).
Siddique, K. H. M., Hanbury, C. L. & Sarker, A. Registration of ‘Ceora’ Grass Pea Registration by CSSA. Crop Sci.46, 986 (2006).10.2135/cropsci2005.0131 DOI
Lambein, F., Khan, J. K., Kuo, Y. H., Campbell, C. G. & Briggs, C. J. Toxins in the seedlings of some varieties of grass pea (Lathyrus sativus). Nat. Toxins1, 246–249 (1993). 10.1002/nt.2620010408 PubMed DOI
Kuo, Y.-H. & Lambein, F. Biosynthesis of the neurotoxin β-N-oxalyl-α, β-diaminopropionic acid in callus tissue of Lathyrus sativus. Phytochemistry30, 3241–3244 (1991).10.1016/0031-9422(91)83184-M DOI
Ikegami, F., Yamamoto, A., Kuo, Y. H. & Lambein, F. Enzymatic formation of 2,3-diaminopropionic acid, the direct precursor of the neurotoxin beta-ODAP, in Lathyrus sativus. Biol. Pharm. Bull.22, 770–771 (1999). 10.1248/bpb.22.770 PubMed DOI
Ikegami, F. et al. Biosynthesis of β-(isoxazolin-5-on-2-yl)-l-alanine by cysteine synthase in Lathyrus sativus. Phytochemistry33, 93–98 (1993).10.1016/0031-9422(93)85402-D DOI
Malathi, K., Padmanab, G. & Sarma, P. S. Biosynthesis of beta-N-oxalyl-L-alpha,beta-diaminopropionic acid, Lathyrus sativus neurotoxin. Phytochemistry9, 1603–1609 (1970).10.1016/S0031-9422(00)85283-8 DOI
Doležel, J. et al. Plant Genome Size Estimation by Flow Cytometry: Inter-laboratory Comparison. Ann. Bot.82, 17–26 (1998).10.1093/oxfordjournals.aob.a010312 DOI
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods17, 155–158 (2020). 10.1038/s41592-019-0669-3 PubMed DOI PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). 10.1093/bioinformatics/bty191 PubMed DOI PMC
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio] (2013).
Edwards, Anne et al. Lathyrus sativus LS007 genome assembly and annotation Rbp1.0. https://zenodo.org/record/7390878 (2022).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). 10.1093/bioinformatics/btv351 PubMed DOI
Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000 Res. 6, 1287 (2017).
Emmrich, P. M. F. Genetic improvement of grass pea (Lathyrus sativus) for low β-L-ODAP content. (University of East Anglia, 2017).
Emmrich, P. M. F. et al. Linking a rapid throughput plate-assay with high-sensitivity stable-isotope label LCMS quantification permits the identification and characterisation of low β-L-ODAP grass pea lines. BMC Plant Biol.19, 489 (2019). 10.1186/s12870-019-2091-5 PubMed DOI PMC
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res25, 955–964 (1997). 10.1093/nar/25.5.955 PubMed DOI PMC
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc.15, 3745–3776 (2020). 10.1038/s41596-020-0400-y PubMed DOI
Macas, J. et al. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE10, e0143424 (2015). 10.1371/journal.pone.0143424 PubMed DOI PMC
Vondrak, T. et al. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J.101, 484–500 (2020). 10.1111/tpj.14546 PubMed DOI PMC
Song, Y. et al. β-Cyanoalanine Synthase Regulates the Accumulation of β-ODAP via Interaction with Serine Acetyltransferase in Lathyrus sativus. J. Agric. Food Chem.69, 1953–1962 (2021). 10.1021/acs.jafc.0c07542 PubMed DOI
Xu, Q., Liu, F., Chen, P., Jez, J. M. & Krishnan, H. B. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int. J. Mol. Sci.18, 526 (2017). 10.3390/ijms18030526 PubMed DOI PMC
Chakraborty, S. et al. Tissue specific expression and in-silico characterization of a putative cysteine synthase gene from Lathyrus sativus L. Gene Expr. Patterns27, 128–134 (2018). 10.1016/j.gep.2017.12.001 PubMed DOI
Yan, Z. Y. et al. Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry67, 107–121 (2006). 10.1016/j.phytochem.2005.10.022 PubMed DOI
Kobylarz, M. J. et al. Synthesis of L-2,3-Diaminopropionic Acid, a Siderophore and Antibiotic Precursor. Chem. Biol.21, 379–388 (2014). 10.1016/j.chembiol.2013.12.011 PubMed DOI
Foster, J., Kim, H. U., Nakata, P. A. & Browse, J. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. Plant Cell Online24, 1217–1229 (2012).10.1105/tpc.112.096032 PubMed DOI PMC
Foster, J., Luo, B. & Nakata, P. A. An oxalyl-CoA dependent pathway of oxalate catabolism plays a role in regulating calcium oxalate crystal accumulation and defending against oxalate-secreting phytopathogens in Medicago truncatula. Plos One11, e0149850 (2016). 10.1371/journal.pone.0149850 PubMed DOI PMC
Foster, J. & Nakata, P. A. An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae. FEBS Lett.588, 160–166 (2014). 10.1016/j.febslet.2013.11.026 PubMed DOI
Goldsmith, M. et al. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). RSC Chem. Biol.3, 320–333 (2022). 10.1039/D1CB00202C PubMed DOI PMC
Kushwah, N. S. et al. Identifcation and characterization of oxalyl-CoA synthetase gene(LsAAE3) in grasspea (Lathyrus sativus L.). J. Food Legumes35, 27–40 (2022).
Quayle, J. R. Chemical synthesis of oxalyl-coenzyme A and its enzymic reduction to glyxylate. Biochim Biophys. Acta57, 398–400 (1962). 10.1016/0006-3002(62)91142-3 PubMed DOI
Leitch, I. J., Johnston, E., Pellicer, J., Hidalgo, O. & Bennett M.D. Plant DNA C-values database, Release 7.1. https://data.kew.org/cvalues/ (2019).
Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet.51, 1411–1422 (2019). 10.1038/s41588-019-0480-1 PubMed DOI
Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology 1–10 10.1038/s41587-020-0503-6 (2020). PubMed PMC
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol.37, 540–546 (2019). 10.1038/s41587-019-0072-8 PubMed DOI
Chen, Y. et al. Fast and accurate assembly of Nanopore reads via progressive error correction and adaptive read selection. bioRxiv 2020.02.01.930107 10.1101/2020.02.01.930107 (2020).
Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput Biol.19, 455–477 (2012). 10.1089/cmb.2012.0021 PubMed DOI PMC
Zimin, A, V. et al. The MaSuRCA genome assembler. Bioinformatics29, 2669–2677 (2013). 10.1093/bioinformatics/btt476 PubMed DOI PMC
Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary Rates Analysis of Leguminosae Implicates a Rapid Diversification of Lineages during the Tertiary. Syst. Biol.54, 575–594 (2005). 10.1080/10635150590947131 PubMed DOI
Azani, N. et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). TAXON66, 44–77 (2017).10.12705/661.3 DOI
Schaefer, H. et al. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evolut. Biol.12, 250 (2012).10.1186/1471-2148-12-250 PubMed DOI PMC
Ghasem, K., Danesh-Gilevaei, M. & Aghaalikhani, M. Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia64, 42–54 (2011).10.1080/00087114.2011.10589763 DOI
Neumann, P., Požárková, D. & Macas, J. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol. Biol.53, 399–410 (2003). 10.1023/B:PLAN.0000006945.77043.ce PubMed DOI
Neumann, P., Koblížková, A., Navrátilová, A. & Macas, J. Significant Expansion of Vicia pannonica Genome Size Mediated by Amplification of a Single Type of Giant Retroelement. Genetics173, 1047–1056 (2006). 10.1534/genetics.106.056259 PubMed DOI PMC
Macas, J. & Neumann, P. Ogre elements — A distinct group of plant Ty3/gypsy-like retrotransposons. Gene390, 108–116 (2007). 10.1016/j.gene.2006.08.007 PubMed DOI
Schenk, S. U. & Werner, D. β-(3-isoxazolin-5-on-2-yl)-alanine from Pisum: allelopathic properties and antimycotic bioassay. Phytochemistry30, 467–470 (1991).10.1016/0031-9422(91)83706-Q DOI
Rekhter, D. et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science365, 498–502 (2019). 10.1126/science.aaw1720 PubMed DOI
Shockey, J. M., Fulda, M. S. & Browse, J. Arabidopsis Contains a Large Superfamily of Acyl-Activating Enzymes. Phylogenetic and Biochemical Analysis Reveals a New Class of Acyl-Coenzyme A Synthetases. Plant Physiol.132, 1065–1076 (2003). 10.1104/pp.103.020552 PubMed DOI PMC
Nobuta, K. et al. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol.144, 1144–1156 (2007). 10.1104/pp.107.097691 PubMed DOI PMC
Torrens-Spence, M. P. et al. PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis. Mol. Plant12, 1577–1586 (2019). 10.1016/j.molp.2019.11.005 PubMed DOI
Goldsmith, M. et al. Identification and characterization of the key enzyme in the biosynthesis of the neurotoxin β-ODAP in grass pea. J. Biol. Chem. 101806 10.1016/j.jbc.2022.101806 (2022) . PubMed PMC
Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics186, 757–761 (2010). 10.1534/genetics.110.120717 PubMed DOI PMC
Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem.85, 227–264 (2016). 10.1146/annurev-biochem-060815-014607 PubMed DOI
Belhaj, K., Chaparro-Garcia, A., Kamoun, S. & Nekrasov, V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods9, 39 (2013). 10.1186/1746-4811-9-39 PubMed DOI PMC
Henikoff, S., Till, B. J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol.135, 630–636 (2004). 10.1104/pp.104.041061 PubMed DOI PMC
Kumar, A. P. K. et al. TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops. Mol. Breed.37, 14 (2017).10.1007/s11032-017-0620-1 DOI
Campbell, C. G. & Briggs, C. J. Registration of low neurotoxin content Lathyrus germplasm LS 8246. Crop Sci.27, 821 (1987).10.2135/cropsci1987.0011183X002700040055x DOI
Zimmer, R. C. & Campbell, C. First report of Sclerotinia sclerotiorum on Lathyrus sativus. Can. Plant Dis. Surv.70, 17–18 (1990).
Hanbury, D. C., Siddique, K., Seymour, M., Jones, R. & MacLeod, B. Growing Ceora grass pea (Lathyrus sativus) in Western Australia. FarmNote58, (Government of Western Australia, 2005).
Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc.2, 2233–2244 (2007). 10.1038/nprot.2007.310 PubMed DOI
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.29, 644–652 (2011). 10.1038/nbt.1883 PubMed DOI PMC
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma.12, 323 (2011).10.1186/1471-2105-12-323 PubMed DOI PMC
Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst.3, 95–98 (2016). 10.1016/j.cels.2016.07.002 PubMed DOI PMC
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95 (2017). 10.1126/science.aal3327 PubMed DOI PMC
Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst.3, 99–101 (2016). 10.1016/j.cels.2015.07.012 PubMed DOI PMC
Venturini, L., Kaithakottil, G. & Swarbreck, D. Extended methods for the annotation of Triticum aestivum CS42. Earlham Institute, Norwich, UK (2016).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience10, giab008 (2021). 10.1093/gigascience/giab008 PubMed DOI PMC
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma.10, 421 (2009).10.1186/1471-2105-10-421 PubMed DOI PMC
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics30, 1236–1240 (2014). 10.1093/bioinformatics/btu031 PubMed DOI PMC
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32, 1792–1797 (2004). 10.1093/nar/gkh340 PubMed DOI PMC
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics25, 1189–1191 (2009). 10.1093/bioinformatics/btp033 PubMed DOI PMC
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014). 10.1093/bioinformatics/btu033 PubMed DOI PMC
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA10, 1 (2019). 10.1186/s13100-018-0144-1 PubMed DOI PMC
Kapust, R. B., Tözsér, J., Copeland, T. D. & Waugh, D. S. The P1′ specificity of tobacco etch virus protease. Biochemical Biophysical Res. Commun.294, 949–955 (2002).10.1016/S0006-291X(02)00574-0 PubMed DOI
Challis, R. rjchallis/assembly-stats. (2020).