Abrogation of IFN-γ Signaling May not Worsen Sensitivity to PD-1/PD-L1 Blockade
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
988218
Grantová Agentura, Univerzita Karlova
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
CZ.1.05/2.1.00/19.0400
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000785
European Regional Development Fund
CZ.1.05/2.1.00/19.0395
European Regional Development Fund
PubMed
32155707
PubMed Central
PMC7084912
DOI
10.3390/ijms21051806
PII: ijms21051806
Knihovny.cz E-zdroje
- Klíčová slova
- IFN-α, IFN-β, IFNGR1, MHC class I, PD-1/PD-L1, cancer, immune checkpoint therapy,
- MeSH
- antigeny CD274 antagonisté a inhibitory MeSH
- antigeny CD279 antagonisté a inhibitory MeSH
- experimentální nádory farmakoterapie imunologie metabolismus patologie MeSH
- imunoterapie MeSH
- interferon gama antagonisté a inhibitory MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- protinádorové látky imunologicky aktivní farmakologie MeSH
- transformované buněčné linie účinky léků imunologie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- Cd274 protein, mouse MeSH Prohlížeč
- interferon gama MeSH
- Pdcd1 protein, mouse MeSH Prohlížeč
- protinádorové látky imunologicky aktivní MeSH
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockade is a promising therapy for various cancer types, but most patients are still resistant. Therefore, a larger number of predictive biomarkers is necessary. In this study, we assessed whether a loss-of-function mutation of the interferon (IFN)-γ receptor 1 (IFNGR1) in tumor cells can interfere with anti-PD-L1 therapy. For this purpose, we used the mouse oncogenic TC-1 cell line expressing PD-L1 and major histocompatibility complex class I (MHC-I) molecules and its TC-1/A9 clone with reversibly downregulated PD-L1 and MHC-I expression. Using the CRISPR/Cas9 system, we generated cells with deactivated IFNGR1 (TC-1/dIfngr1 and TC-1/A9/dIfngr1). In tumors, IFNGR1 deactivation did not lead to PD-L1 or MHC-I reduction on tumor cells. From potential inducers, mainly IFN-α and IFN-β enhanced PD-L1 and MHC-I expression on TC-1/dIfngr1 and TC-1/A9/dIfngr1 cells in vitro. Neutralization of the IFN-α/IFN-β receptor confirmed the effect of these cytokines in vivo. Combined immunotherapy with PD-L1 blockade and DNA vaccination showed that IFNGR1 deactivation did not reduce tumor sensitivity to anti-PD-L1. Thus, the impairment of IFN-γ signaling may not be sufficient for PD-L1 and MHC-I reduction on tumor cells and resistance to PD-L1 blockade, and thus should not be used as a single predictive marker for anti-PD-1/PD-L1 cancer therapy.
Department of Cell Biology Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Christofi T., Baritaki S., Falzone L., Libra M., Zaravinos A. Current perspectives in cancer immunotherapy. Cancers. 2019;11:1472. doi: 10.3390/cancers11101472. PubMed DOI PMC
Falzone L., Salomone S., Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol. 2018;9:1300. doi: 10.3389/fphar.2018.01300. PubMed DOI PMC
Liu M., Guo F. Recent updates on cancer immunotherapy. Precis. Clin. Med. 2018;1:65–74. doi: 10.1093/pcmedi/pby011. PubMed DOI PMC
Zhang H., Chen J. Current status and future directions of cancer immunotherapy. J. Cancer. 2018;9:1773–1781. doi: 10.7150/jca.24577. PubMed DOI PMC
Markham A., Duggan S. Cemiplimab: First global approval. Drugs. 2018;78:1841–1846. doi: 10.1007/s40265-018-1012-5. PubMed DOI
Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. PubMed DOI PMC
Sul J., Blumenthal G.M., Jiang X., He K., Keegan P., Pazdur R. FDA approval summary: Pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21:643–650. doi: 10.1634/theoncologist.2015-0498. PubMed DOI PMC
Ribas A., Hamid O., Daud A., Hodi F.S., Wolchok J.D., Kefford R., Joshua A.M., Patnaik A., Hwu W.-J., Weber J.S., et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315:1600–1609. doi: 10.1001/jama.2016.4059. PubMed DOI
Buder-Bakhaya K., Hassel J.C. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—A review from the melanoma perspective and beyond. Front. Immunol. 2018;9:1474. doi: 10.3389/fimmu.2018.01474. PubMed DOI PMC
Shin D.S., Zaretsky J.M., Escuin-Ordinas H., Garcia-Diaz A., Hu-Lieskovan S., Kalbasi A., Grasso C.S., Hugo W., Sandoval S., Torrejon D.Y., et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201. doi: 10.1158/2159-8290.CD-16-1223. PubMed DOI PMC
Zaretsky J.M., Garcia-Diaz A., Shin D.S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., Torrejon D.Y., Abril-Rodriguez G., Sandoval S., Barthly L., et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 2016;375:819–829. doi: 10.1056/NEJMoa1604958. PubMed DOI PMC
Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404. doi: 10.1016/j.cell.2016.08.069. PubMed DOI PMC
Lin C.-F., Lin C.-M., Lee K.-Y., Wu S.-Y., Feng P.-H., Chen K.-Y., Chuang H.-C., Chen C.-L., Wang Y.-C., Tseng P.-C., et al. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J. Biomed. Sci. 2017;24:10. doi: 10.1186/s12929-017-0317-0. PubMed DOI PMC
Davis A.A., Patel V.G. The role of PD-L1 expression as a predictive biomarker: An analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer. 2019;7:278. doi: 10.1186/s40425-019-0768-9. PubMed DOI PMC
Lin K.-Y., Guarnieri F.G., Staveley-O’Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.-C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed
Smahel M., Sıma P., Ludvıková V., Marinov I., Pokorná D., Vonka V. Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell sublines with downregulated expression of MHC class I molecules. Vaccine. 2003;21:1125–1136. doi: 10.1016/S0264-410X(02)00519-4. PubMed DOI
Juneja V.R., McGuire K.A., Manguso R.T., LaFleur M.W., Collins N., Haining W.N., Freeman G.J., Sharpe A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 2017;214:895–904. doi: 10.1084/jem.20160801. PubMed DOI PMC
Kleinovink J.W., Marijt K.A., Schoonderwoerd M.J.A., van Hall T., Ossendorp F., Fransen M.F. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. OncoImmunology. 2017;6:e1294299. doi: 10.1080/2162402X.2017.1294299. PubMed DOI PMC
Lau J., Cheung J., Navarro A., Lianoglou S., Haley B., Totpal K., Sanders L., Koeppen H., Caplazi P., McBride J., et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 2017;8:14572. doi: 10.1038/ncomms14572. PubMed DOI PMC
Noguchi T., Ward J.P., Gubin M.M., Arthur C.D., Lee S.H., Hundal J., Selby M.J., Graziano R.F., Mardis E.R., Korman A.J., et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol. Res. 2017;5:106–117. doi: 10.1158/2326-6066.CIR-16-0391. PubMed DOI PMC
Tang H., Liang Y., Anders R.A., Taube J.M., Qiu X., Mulgaonkar A., Liu X., Harrington S.M., Guo J., Xin Y., et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J. Clin. Investig. 2018;128:580–588. doi: 10.1172/JCI96061. PubMed DOI PMC
Abiko K., Matsumura N., Hamanishi J., Horikawa N., Murakami R., Yamaguchi K., Yoshioka Y., Baba T., Konishi I., Mandai M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer. 2015;112:1501–1509. doi: 10.1038/bjc.2015.101. PubMed DOI PMC
Zaidi M.R., Merlino G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 2011;17:6118–6124. doi: 10.1158/1078-0432.CCR-11-0482. PubMed DOI PMC
Shankaran V., Ikeda H., Bruce A.T., White J.M., Swanson P.E., Old L.J., Schreiber R.D. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–1111. doi: 10.1038/35074122. PubMed DOI
Algarra I., García-Lora A., Cabrera T., Ruiz-Cabello F., Garrido F. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: Implications for tumor immune escape. Cancer Immunol. Immunother. 2004;53:904–910. doi: 10.1007/s00262-004-0517-9. PubMed DOI PMC
Benci J.L., Xu B., Qiu Y., Wu T., Dada H., Victor C.T.-S., Cucolo L., Lee D.S.M., Pauken K.E., Huang A.C., et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–1554. doi: 10.1016/j.cell.2016.11.022. PubMed DOI PMC
Garcia-Diaz A., Shin D.S., Moreno B.H., Saco J., Escuin-Ordinas H., Rodriguez G.A., Zaretsky J.M., Sun L., Hugo W., Wang X., et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–1201. doi: 10.1016/j.celrep.2017.04.031. PubMed DOI PMC
Brody J.R., Costantino C.L., Berger A.C., Sato T., Lisanti M.P., Yeo C.J., Emmons R.V., Witkiewicz A.K. Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle. 2009;8:1930–1934. doi: 10.4161/cc.8.12.8745. PubMed DOI
Chan L.-C., Li C.-W., Xia W., Hsu J.-M., Lee H.-H., Cha J.-H., Wang H.-L., Yang W.-H., Yen E.-Y., Chang W.-C., et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. Investig. 2019;129:3324–3338. doi: 10.1172/JCI126022. PubMed DOI PMC
Rolvering C., Zimmer A.D., Ginolhac A., Margue C., Kirchmeyer M., Servais F., Hermanns H.M., Hergovits S., Nazarov P.V., Nicot N., et al. The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies. J. Leukocyte Biol. 2018;104:969–985. doi: 10.1002/JLB.MA1217-495R. PubMed DOI
Garrido G., Rabasa A., Garrido C., Chao L., Garrido F., García-Lora Á.M., Sánchez-Ramírez B. Upregulation of HLA Class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front. Pharmacol. 2017;8:595. doi: 10.3389/fphar.2017.00595. PubMed DOI PMC
Wang T.-T., Zhao Y.-L., Peng L.-S., Chen N., Chen W., Lv Y.-P., Mao F.-Y., Zhang J.-Y., Cheng P., Teng Y.-S., et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 2017;66:1900–1911. doi: 10.1136/gutjnl-2016-313075. PubMed DOI PMC
Li C.-W., Lim S.-O., Xia W., Lee H.-H., Chan L.-C., Kuo C.-W., Khoo K.-H., Chang S.-S., Cha J.-H., Kim T., et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC
Lim S.-O., Li C.-W., Xia W., Cha J.-H., Chan L.-C., Wu Y., Chang S.-S., Lin W.-C., Hsu J.-M., Hsu Y.-H., et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–939. doi: 10.1016/j.ccell.2016.10.010. PubMed DOI PMC
Carbotti G., Barisione G., Airoldi I., Mezzanzanica D., Bagnoli M., Ferrero S., Petretto A., Fabbi M., Ferrini S. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget. 2015;6:43267–43280. doi: 10.18632/oncotarget.6530. PubMed DOI PMC
Paulson K.G., Tegeder A., Willmes C., Iyer J.G., Afanasiev O.K., Schrama D., Koba S., Thibodeau R., Nagase K., Simonson W.T., et al. Downregulation of MHC-I expression is prevalent but reversible in merkel cell carcinoma. Cancer Immunol. Res. 2014;2:1071–1079. doi: 10.1158/2326-6066.CIR-14-0005. PubMed DOI PMC
Ghosh S., Paul A., Sen E. Tumor necrosis factor alpha-induced hypoxia-inducible factor 1α–β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol. Cell. Biol. 2013;33:2718–2731. doi: 10.1128/MCB.01254-12. PubMed DOI PMC
Youngnak-Piboonratanakit P., Tsushima F., Otsuki N., Igarashi H., Machida U., Iwai H., Takahashi Y., Omura K., Yokozeki H., Azuma M. The expression of B7-H1 on keratinocytes in chronic inflammatory mucocutaneous disease and its regulatory role. Immunol. Lett. 2004;94:215–222. doi: 10.1016/j.imlet.2004.05.007. PubMed DOI
Wicks I.P., Leizer T., Wawryk S.O., Novotny J.R., Hamilton J., Vitti G., Boyd A.W. The effect of cytokines on the expression of MHC antigens and ICAM-1 by normal and transformed synoviocytes. Autoimmunity. 1992;12:13–19. doi: 10.3109/08916939209146125. PubMed DOI
Schadt L., Sparano C., Schweiger N.A., Silina K., Cecconi V., Lucchiari G., Yagita H., Guggisberg E., Saba S., Nascakova Z., et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 2019;29:1236–1248. doi: 10.1016/j.celrep.2019.09.065. PubMed DOI
Liang Y., Tang H., Guo J., Qiu X., Yang Z., Ren Z., Sun Z., Bian Y., Xu L., Xu H., et al. Targeting IFNα to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat. Commun. 2018;9:4586. doi: 10.1038/s41467-018-06890-y. PubMed DOI PMC
Rizvi H., Sanchez-Vega F., La K., Chatila W., Jonsson P., Halpenny D., Plodkowski A., Long N., Sauter J.L., Rekhtman N., et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 2018;36:633–641. doi: 10.1200/JCO.2017.75.3384. PubMed DOI PMC
Ascierto M.L., Makohon-Moore A., Lipson E.J., Taube J.M., McMiller T.L., Berger A.E., Fan J., Kaunitz G.J., Cottrell T.R., Kohutek Z.A., et al. Transcriptional mechanisms of resistance to anti–PD-1 therapy. Clin. Cancer Res. 2017;23:3168–3180. doi: 10.1158/1078-0432.CCR-17-0270. PubMed DOI PMC
Riaz N., Havel J.J., Makarov V., Desrichard A., Urba W.J., Sims J.S., Hodi F.S., Martín-Algarra S., Mandal R., Sharfman W.H., et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934–949. doi: 10.1016/j.cell.2017.09.028. PubMed DOI PMC
Hugo W., Zaretsky J.M., Sun L., Song C., Moreno B.H., Hu-Lieskovan S., Berent-Maoz B., Pang J., Chmielowski B., Cherry G., et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44. doi: 10.1016/j.cell.2016.02.065. PubMed DOI PMC
Mehnert J.M., Panda A., Zhong H., Hirshfield K., Damare S., Lane K., Sokol L., Stein M.N., Rodriguez-Rodriquez L., Kaufman H.L., et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Investig. 2016;126:2334–2340. doi: 10.1172/JCI84940. PubMed DOI PMC
Sade-Feldman M., Jiao Y.J., Chen J.H., Rooney M.S., Barzily-Rokni M., Eliane J.-P., Bjorgaard S.L., Hammond M.R., Vitzthum H., Blackmon S.M., et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 2017;8:1136. doi: 10.1038/s41467-017-01062-w. PubMed DOI PMC
Bullock B.L., Kimball A.K., Poczobutt J.M., Neuwelt A.J., Li H.Y., Johnson A.M., Kwak J.W., Kleczko E.K., Kaspar R.E., Wagner E.K., et al. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti–PD-1 response in NSCLC. Life Sci. Alliance. 2019;2:e201900328. doi: 10.26508/lsa.201900328. PubMed DOI PMC
Smahel M., Sima P., Ludvíkova V., Vonka V. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI
Smahel M., Polakova I., Duskova M., Ludvikova V., Kastankova I. The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther. 2014;21:225–232. doi: 10.1038/gt.2013.81. PubMed DOI
Alexander J., Sidney J., Southwood S., Ruppert J., Oseroff C., Maewal A., Snoke K., Serra H.M., Kubo R.T., Sette A., et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1994;1:751–761. doi: 10.1016/S1074-7613(94)80017-0. PubMed DOI