CD80 Expression on Tumor Cells Alters Tumor Microenvironment and Efficacy of Cancer Immunotherapy by CTLA-4 Blockade
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 988218
Grantová Agentura, Univerzita Karlova
SVV 260568
Grantová Agentura, Univerzita Karlova
GA19‑00816S
Grantová Agentura České Republiky
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000785
European Regional Development Fund
CZ.1.05/2.1.00/19.0395
European Regional Development Fund
PubMed
33923750
PubMed Central
PMC8072777
DOI
10.3390/cancers13081935
PII: cancers13081935
Knihovny.cz E-zdroje
- Klíčová slova
- CD80, CTLA-4, PD-L1, cancer, immune checkpoint blockade, tumor-infiltrating lymphocytes,
- Publikační typ
- časopisecké články MeSH
Cluster of differentiation (CD) 80 is mainly expressed in immune cells but can also be found in several types of cancer cells. This molecule may either activate or inhibit immune reactions. Here, we determined the immunosuppressive role of CD80 in the tumor microenvironment by CRISPR/Cas9-mediated deactivation of the corresponding gene in the mouse oncogenic TC-1 cell line. The tumor cells with deactivated CD80 (TC-1/dCD80-1) were more immunogenic than parental cells and induced tumors that gained sensitivity to cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockade, as compared with the TC-1 cells. In vivo depletion experiments showed that the deactivation of CD80 switched the pro-tumorigenic effect of macrophages observed in TC-1-induced tumors into an anti-tumorigenic effect in TC-1/dCD80-1 tumors and induced the pro-tumorigenic activity of CD4+ cells. Moreover, the frequency of lymphoid and myeloid cells and the CTLA-4 expression by T helper (Th)17 cells were increased in TC-1/dCD80-1- compared with that in the TC-1-induced tumors. CTLA-4 blockade downregulated the frequencies of most immune cell types and upregulated the frequency of M2 macrophages in the TC-1 tumors, while it increased the frequency of lymphoid cells in TC-1/dCD80-1-induced tumors. Furthermore, the anti-CTLA-4 therapy enhanced the frequency of CD8+ T cells as well as CD4+ T cells, especially for a Th1 subset. Regulatory T cells (Treg) formed the most abundant CD4+ T cell subset in untreated tumors. The anti-CTLA-4 treatment downregulated the frequency of Treg cells with limited immunosuppressive potential in the TC-1 tumors, whereas it enriched this type of Treg cells and decreased the Treg cells with high immunosuppressive potential in TC-1/dCD80-1-induced tumors. The immunosuppressive role of tumor-cell-expressed CD80 should be considered in research into biomarkers for the prediction of cancer patients' sensitivity to immune checkpoint inhibitors and for the development of a tumor-cell-specific CD80 blockade.
Department of Cell Biology Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Lenschow D.J., Su G.H., Zuckerman L.A., Nabavi N., Jellis C.L., Gray G.S., Miller J., Bluestone J.A. Expression and Functional Significance of an Additional Ligand for CTLA-4. Proc. Natl. Acad. Sci. USA. 1993;90:11054–11058. doi: 10.1073/pnas.90.23.11054. PubMed DOI PMC
Sansom D.M. CD28, CTLA-4 and their ligands: Who does what and to whom? Immunology. 2000;101:169–177. doi: 10.1046/j.1365-2567.2000.00121.x. PubMed DOI PMC
Lindsten T., Lee K.P., Harris E.S., Petryniak B., Craighead N., Reynolds P.J., Lombard D.B., Freeman G.J., Nadler L.M., Gray G.S. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol. 1993;151:3489–3499. PubMed
Feng X.-Y., Lu L., Wang K.-F., Zhu B.-Y., Wen X.-Z., Peng R.-Q., Ding Y., Li D.-D., Li J.-J., Li Y., et al. Low expression of CD80 predicts for poor prognosis in patients with gastric adenocarcinoma. Future Oncol. Lond. Engl. 2019;15:473–483. doi: 10.2217/fon-2018-0420. PubMed DOI
Ganesan P.L., Alexander S.I., Watson D., Logan G.J., Zhang G.Y., Alexander I.E. Robust anti-tumor immunity and memory in rag-1-deficient mice following adoptive transfer of cytokine-primed splenocytes and tumor CD80 expression. Cancer Immunol. Immunother. 2007;56:1955–1965. doi: 10.1007/s00262-007-0339-7. PubMed DOI PMC
Tirapu I., Huarte E., Guiducci C., Arina A., Zaratiegui M., Murillo O., Gonzalez A., Berasain C., Berraondo P., Fortes P., et al. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006;66:2442–2450. doi: 10.1158/0008-5472.CAN-05-1681. PubMed DOI
Ostrand-Rosenberg S., Horn L.A., Alvarez J.A. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunol. Immunother. 2015;64:1287–1293. doi: 10.1007/s00262-015-1677-5. PubMed DOI PMC
Chaudhri A., Xiao Y., Klee A.N., Wang X., Zhu B., Freeman G.J. PD-L1 binds to B7-1 only in cis on the same cell surface. Cancer Immunol. Res. 2018;6:921–929. doi: 10.1158/2326-6066.CIR-17-0316. PubMed DOI PMC
Zhao Y., Lee C.K., Lin C.-H., Gassen R.B., Xu X., Huang Z., Xiao C., Bonorino C., Lu L.-F., Bui J.D., et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity. 2019;51:1059–1073.e9. doi: 10.1016/j.immuni.2019.11.003. PubMed DOI PMC
Mayoux M., Roller A., Pulko V., Sammicheli S., Chen S., Sum E., Jost C., Fransen M.F., Buser R.B., Kowanetz M., et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 2020;12 doi: 10.1126/scitranslmed.aav7431. PubMed DOI
Liu A., Hu P., Khawli L.A., Epstein A.L. B7.1/NHS76: A new costimulator fusion protein for the immunotherapy of solid tumors. J. Immunother. 2006;29:425–435. doi: 10.1097/01.cji.0000208260.80791.3d. PubMed DOI
Mikami N., Kawakami R., Chen K.Y., Sugimoto A., Ohkura N., Sakaguchi S. Epigenetic conversion of conventional T Cells into regulatory T cells by CD28 signal deprivation. Proc. Natl. Acad. Sci. USA. 2020;117:12258–12268. doi: 10.1073/pnas.1922600117. PubMed DOI PMC
Kalekar L.A., Schmiel S.E., Nandiwada S.L., Lam W.Y., Barsness L.O., Zhang N., Stritesky G.L., Malhotra D., Pauken K.E., Linehan J.L., et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 2016;17:304–314. doi: 10.1038/ni.3331. PubMed DOI PMC
Pletinckx K., Vaeth M., Schneider T., Beyersdorf N., Hünig T., Berberich-Siebelt F., Lutz M.B. Immature dendritic cells convert anergic nonregulatory T Cells into Foxp3−IL-10+ regulatory T cells by engaging CD28 and CTLA-4. Eur. J. Immunol. 2015;45:480–491. doi: 10.1002/eji.201444991. PubMed DOI
Ronchetti S., Ricci E., Petrillo M.G., Cari L., Migliorati G., Nocentini G., Riccardi C. Glucocorticoid-induced tumour necrosis factor receptor-related protein: A key marker of functional regulatory T cells. J. Immunol. Res. 2015;2015:171520. doi: 10.1155/2015/171520. PubMed DOI PMC
Sun B., Liu M., Cui M., Li T. Granzyme b-expressing treg cells are enriched in colorectal cancer and present the potential to eliminate autologous t conventional cells. Immunol. Lett. 2020;217:7–14. doi: 10.1016/j.imlet.2019.10.007. PubMed DOI
Di Virgilio F., Sarti A.C., Falzoni S., De Marchi E., Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer. 2018;18:601–618. doi: 10.1038/s41568-018-0037-0. PubMed DOI
de Leve S., Wirsdörfer F., Jendrossek V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front. Immunol. 2019;10:698. doi: 10.3389/fimmu.2019.00698. PubMed DOI PMC
Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–275. doi: 10.1126/science.1160062. PubMed DOI
Hou T.Z., Qureshi O.S., Wang C.J., Baker J., Young S.P., Walker L.S.K., Sansom D.M. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T Cells. J. Immunol. Baltim. Md 1950. 2015;194:2148–2159. doi: 10.4049/jimmunol.1401876. PubMed DOI PMC
Sugár I.P., Das J., Jayaprakash C., Sealfon S.C. Multiscale modeling of complex formation and CD80 depletion during immune synapse development. Biophys. J. 2017;112:997–1009. doi: 10.1016/j.bpj.2016.12.052. PubMed DOI PMC
Rudd C.E. CTLA-4 co-receptor impacts on the function of treg and CD8+ T-cell subsets. Eur. J. Immunol. 2009;39:687–690. doi: 10.1002/eji.200939261. PubMed DOI PMC
Huang C.-T., Workman C.J., Flies D., Pan X., Marson A.L., Zhou G., Hipkiss E.L., Ravi S., Kowalski J., Levitsky H.I., et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–513. doi: 10.1016/j.immuni.2004.08.010. PubMed DOI
Maruhashi T., Sugiura D., Okazaki I., Okazaki T. LAG-3: From molecular functions to clinical applications. J. Immunother. Cancer. 2020;8:e001014. doi: 10.1136/jitc-2020-001014. PubMed DOI PMC
Hansen W., Hutzler M., Abel S., Alter C., Stockmann C., Kliche S., Albert J., Sparwasser T., Sakaguchi S., Westendorf A.M., et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory t cells impairs mouse melanoma growth. J. Exp. Med. 2012;209:2001–2016. doi: 10.1084/jem.20111497. PubMed DOI PMC
Arce Vargas F., Furness A.J.S., Litchfield K., Joshi K., Rosenthal R., Ghorani E., Solomon I., Lesko M.H., Ruef N., Roddie C., et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell. 2018;33:649–663.e4. doi: 10.1016/j.ccell.2018.02.010. PubMed DOI PMC
Kamada T., Togashi Y., Tay C., Ha D., Sasaki A., Nakamura Y., Sato E., Fukuoka S., Tada Y., Tanaka A., et al. PD-1+ regulatory t cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA. 2019;116:9999–10008. doi: 10.1073/pnas.1822001116. PubMed DOI PMC
Tan C.L., Kuchroo J.R., Sage P.T., Liang D., Francisco L.M., Buck J., Thaker Y.R., Zhang Q., McArdel S.L., Juneja V.R., et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 2021;218:e20182232. doi: 10.1084/jem.20182232. PubMed DOI PMC
Cameron F., Whiteside G., Perry C. Ipilimumab. Drugs. 2011;71:1093–1104. doi: 10.2165/11594010-000000000-00000. PubMed DOI
Kwok G., Yau T.C.C., Chiu J.W., Tse E., Kwong Y.-L. Pembrolizumab (Keytruda) Hum. Vaccines Immunother. 2016;12:2777–2789. doi: 10.1080/21645515.2016.1199310. PubMed DOI PMC
Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. PubMed DOI PMC
Sul J., Blumenthal G.M., Jiang X., He K., Keegan P., Pazdur R. FDA approval summary: Pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21:643–650. doi: 10.1634/theoncologist.2015-0498. PubMed DOI PMC
Barrueto L., Caminero F., Cash L., Makris C., Lamichhane P., Deshmukh R.R. Resistance to checkpoint inhibition in cancer immunotherapy. Transl. Oncol. 2020;13:100738. doi: 10.1016/j.tranon.2019.12.010. PubMed DOI PMC
Janousková O., Síma P., Kunke D. Combined suicide gene and immunostimulatory gene therapy using AAV-mediated gene transfer to HPV-16 transformed mouse cell: Decrease of oncogenicity and induction of protection. Int. J. Oncol. 2003;22:569–577. doi: 10.3892/ijo.22.3.569. PubMed DOI
Bodor J.N., Boumber Y., Borghaei H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC) Cancer. 2020;126:260–270. doi: 10.1002/cncr.32468. PubMed DOI PMC
Bernsen M.R., Håkansson L., Gustafsson B., Krysander L., Rettrup B., Ruiter D., Håkansson A. On the biological relevance of MHC Class II and B7 expression by tumour cells in melanoma metastases. Br. J. Cancer. 2003;88:424–431. doi: 10.1038/sj.bjc.6600703. PubMed DOI PMC
Marchiori C., Scarpa M., Kotsafti A., Morgan S., Fassan M., Guzzardo V., Porzionato A., Angriman I., Ruffolo C., Sut S., et al. Epithelial CD80 promotes immune surveillance of colonic preneoplastic lesions and its expression is increased by oxidative stress through STAT3 in colon cancer cells. J. Exp. Clin. Cancer Res. 2019;38:190. doi: 10.1186/s13046-019-1205-0. PubMed DOI PMC
Li J., Yang Y., Inoue H., Mori M., Akiyoshi T. The expression of costimulatory molecules CD80 and CD86 in human carcinoma cell lines: Its regulation by interferon γ and interleukin-10. Cancer Immunol. Immunother. 1996;43:213–219. doi: 10.1007/s002620050324. PubMed DOI
Madonna G., Ballesteros-Merino C., Feng Z., Bifulco C., Capone M., Giannarelli D., Mallardo D., Simeone E., Grimaldi A.M., Caracò C., et al. PD-L1 Expression with immune-infiltrate evaluation and outcome prediction in melanoma patients treated with ipilimumab. OncoImmunology. 2018;7:e1405206. doi: 10.1080/2162402X.2017.1405206. PubMed DOI PMC
Bogen B., Fauskanger M., Haabeth O.A., Tveita A. CD4+ T Cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol. Immunother. 2019;68:1865–1873. doi: 10.1007/s00262-019-02374-0. PubMed DOI PMC
Eisel D., Das K., Dickes E., König R., Osen W., Eichmüller S.B. Cognate interaction with CD4+ T cells instructs tumor-associated macrophages to acquire m1-like phenotype. Front. Immunol. 2019;10:219. doi: 10.3389/fimmu.2019.00219. PubMed DOI PMC
Paul S., Chhatar S., Mishra A., Lal G. Natural killer T cell activation increases INOS+CD206- M1 macrophage and controls the growth of solid tumor. J. Immunother. Cancer. 2019;7:208. doi: 10.1186/s40425-019-0697-7. PubMed DOI PMC
Chan D.V., Gibson H.M., Aufiero B.M., Wilson A.J., Hafner M.S., Mi Q.-S., Wong H.K. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun. 2014;15:25–32. doi: 10.1038/gene.2013.57. PubMed DOI PMC
Krummey S.M., Hartigan C.R., Liu D., Ford M.L. CD28-dependent CTLA-4 expression fine-tunes the activation of human Th17 cells. iScience. 2020;23:100912. doi: 10.1016/j.isci.2020.100912. PubMed DOI PMC
Beyranvand Nejad E., van der Sluis T.C., van Duikeren S., Yagita H., Janssen G.M., van Veelen P.A., Melief C.J.M., van der Burg S.H., Arens R. Tumor eradication by cisplatin is sustained by CD80/86-mediated costimulation of CD8+ T cells. Cancer Res. 2016;76:6017–6029. doi: 10.1158/0008-5472.CAN-16-0881. PubMed DOI
Liu Z., Zhou H., Wang W., Fu Y.-X., Zhu M. A Novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. Oncoimmunology. 2016;5:e1147641. doi: 10.1080/2162402X.2016.1147641. PubMed DOI PMC
van Hooren L., Sandin L.C., Moskalev I., Ellmark P., Dimberg A., Black P., Tötterman T.H., Mangsbo S.M. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. Eur. J. Immunol. 2017;47:385–393. doi: 10.1002/eji.201646583. PubMed DOI
Fiegle E., Doleschel D., Koletnik S., Rix A., Weiskirchen R., Borkham-Kamphorst E., Kiessling F., Lederle W. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia. 2019;21:932–944. doi: 10.1016/j.neo.2019.07.006. PubMed DOI PMC
Baweja A., Mar N. Metastatic penile squamous cell carcinoma with dramatic response to combined checkpoint blockade with ipilimumab and nivolumab. J. Oncol. Pharm. Pract. 2021;27:212–215. doi: 10.1177/1078155220922602. PubMed DOI
Parikh N.D., Marshall A., Betts K.A., Song J., Zhao J., Yuan M., Wu A., Huff K.D., Kim R. Network meta-analysis of nivolumab plus ipilimumab in the second-line setting for advanced hepatocellular carcinoma. J. Comp. Eff. Res. 2021 doi: 10.2217/cer-2020-0236. PubMed DOI
Garrett-Thomson S.C., Massimi A., Fedorov E.V., Bonanno J.B., Scandiuzzi L., Hillerich B., Iii R.D.S., Love J.D., Garforth S.J., Guha C., et al. Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex. PLoS ONE. 2020;15:e0233578. doi: 10.1371/journal.pone.0233578. PubMed DOI PMC
Vackova J., Piatakova A., Polakova I., Smahel M. Abrogation of IFN-γ signaling may not worsen sensitivity to PD-1/PD-L1 blockade. Int. J. Mol. Sci. 2020;21:1806. doi: 10.3390/ijms21051806. PubMed DOI PMC
Spranger S., Koblish H.K., Horton B., Scherle P.A., Newton R., Gajewski T.F. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer. 2014;2:3. doi: 10.1186/2051-1426-2-3. PubMed DOI PMC
Ahn E., Araki K., Hashimoto M., Li W., Riley J.L., Cheung J., Sharpe A.H., Freeman G.J., Irving B.A., Ahmed R. Role of PD-1 during effector CD8 T cell differentiation. Proc. Natl. Acad. Sci. USA. 2018;115:4749–4754. doi: 10.1073/pnas.1718217115. PubMed DOI PMC
Siddiqui I., Schaeuble K., Chennupati V., Fuertes Marraco S.A., Calderon-Copete S., Pais Ferreira D., Carmona S.J., Scarpellino L., Gfeller D., Pradervand S., et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50:195–211.e10. doi: 10.1016/j.immuni.2018.12.021. PubMed DOI
Sanseviero E., O’Brien E.M., Karras J.R., Shabaneh T.B., Aksoy B.A., Xu W., Zheng C., Yin X., Xu X., Karakousis G.C., et al. Anti-CTLA-4 activates intratumoral NK cells and combined with IL15/IL15Rα complexes enhances tumor control. Cancer Immunol. Res. 2019;7:1371–1380. doi: 10.1158/2326-6066.CIR-18-0386. PubMed DOI PMC
Liu X., Hogg G.D., DeNardo D.G. Rethinking Immune checkpoint blockade: Beyond the T cell. J. Immunother. Cancer. 2021;9:e001460. doi: 10.1136/jitc-2020-001460. PubMed DOI PMC
Galon J., Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. PubMed DOI
Tosolini M., Kirilovsky A., Mlecnik B., Fredriksen T., Mauger S., Bindea G., Berger A., Bruneval P., Fridman W.-H., Pagès F., et al. Clinical impact of different classes of infiltrating t cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–1271. doi: 10.1158/0008-5472.CAN-10-2907. PubMed DOI
De Simone V., Franzè E., Ronchetti G., Colantoni A., Fantini M.C., Di Fusco D., Sica G.S., Sileri P., MacDonald T.T., Pallone F., et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-KB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–3503. doi: 10.1038/onc.2014.286. PubMed DOI PMC
Kaewkangsadan V., Verma C., Eremin J.M., Cowley G., Ilyas M., Eremin O. Crucial contributions by t lymphocytes (effector, regulatory, and checkpoint inhibitor) and cytokines (TH1, TH2, and TH17) to a pathological complete response induced by neoadjuvant chemotherapy in women with breast cancer. J. Immunol. Res. 2016;2016:4757405. doi: 10.1155/2016/4757405. PubMed DOI PMC
Ohue Y., Nishikawa H. Regulatory T (Treg) cells in cancer: Can treg cells be a new therapeutic target? Cancer Sci. 2019;110:2080–2089. doi: 10.1111/cas.14069. PubMed DOI PMC
Liu D., Xing S., Wang W., Huang X., Lin H., Chen Y., Lan K., Chen L., Luo F., Qin S., et al. Prognostic value of serum soluble interleukin-23 receptor and related T-helper 17 cell cytokines in non-small cell lung carcinoma. Cancer Sci. 2020;111:1093–1102. doi: 10.1111/cas.14343. PubMed DOI PMC
Walunas T.L., Bluestone J.A. CTLA-4 Regulates tolerance induction and t cell differentiation in vivo. J. Immunol. 1998;160:3855–3860. PubMed
Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9. doi: 10.1016/j.cell.2016.08.069. PubMed DOI PMC
Wei S.C., Levine J.H., Cogdill A.P., Zhao Y., Anang N.-A.A.S., Andrews M.C., Sharma P., Wang J., Wargo J.A., Pe’er D., et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133.e17. doi: 10.1016/j.cell.2017.07.024. PubMed DOI PMC
Zhang M., Wu Y., Bastian D., Iamsawat S., Chang J., Daenthanasanmak A., Nguyen H.D., Schutt S., Dai M., Chen F., et al. Inducible T-cell co-stimulator impacts chronic graft-versus-host disease by regulating both pathogenic and regulatory t cells. Front. Immunol. 2018;9:1461. doi: 10.3389/fimmu.2018.01461. PubMed DOI PMC
Li D.-Y., Xiong X.-Z. ICOS+ tregs: A functional subset of tregs in immune diseases. Front. Immunol. 2020;11:2104. doi: 10.3389/fimmu.2020.02104. PubMed DOI PMC
Ricco M.L., Ronin E., Collares D., Divoux J., Grégoire S., Wajant H., Gomes T., Grinberg-Bleyer Y., Baud V., Marodon G., et al. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-ΚB. Eur. J. Immunol. 2020;50:972–985. doi: 10.1002/eji.201948393. PubMed DOI PMC
Ikebuchi R., Fujimoto M., Nakanishi Y., Okuyama H., Moriya T., Kusumoto Y., Tomura M. Functional phenotypic diversity of regulatory T cells remaining in inflamed skin. Front. Immunol. 2019;10:1098. doi: 10.3389/fimmu.2019.01098. PubMed DOI PMC
Predina J., Eruslanov E., Judy B., Kapoor V., Cheng G., Wang L.-C., Sun J., Moon E.K., Fridlender Z.G., Albelda S., et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc. Natl. Acad. Sci. USA. 2013;110:E415–E424. doi: 10.1073/pnas.1211850110. PubMed DOI PMC
Lin K.-Y., Guarnieri F.G., Staveley-O’Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.-C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed
Van Gassen S., Callebaut B., Van Helden M.J., Lambrecht B.N., Demeester P., Dhaene T., Saeys Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytol. J. Int. Soc. Anal. Cytol. 2015;87:636–645. doi: 10.1002/cyto.a.22625. PubMed DOI