Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- alternativní sestřih * MeSH
- DNA rostlinná chemie genetika MeSH
- Fabaceae genetika MeSH
- genetická transkripce * MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce genetika MeSH
- regulace genové exprese u rostlin MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546-562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.
Zobrazit více v PubMed
Trends Genet. 2000 Apr;16(4):151-2 PubMed
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5301-6 PubMed
Plant Mol Biol. 1996 May;31(2):295-306 PubMed
Nat Rev Genet. 2002 May;3(5):329-41 PubMed
EMBO J. 1990 Oct;9(10):3353-62 PubMed
Science. 1994 Jul 29;265(5172):615-21 PubMed
Annu Rev Genet. 1999;33:479-532 PubMed
Cell Mol Life Sci. 2001 Aug;58(9):1246-62 PubMed
Cell. 1981 Nov;27(1 Pt 2):1-3 PubMed
Plant Mol Biol. 2000 Jan;42(1):251-69 PubMed
Plant Mol Biol. 1999 Aug;40(6):903-10 PubMed
Genome Res. 2002 Oct;12(10):1455-65 PubMed
J Virol. 1995 Sep;69(9):5320-31 PubMed
J Mol Biol. 1998 Sep 18;282(2):359-68 PubMed
Plant Physiol. 2001 Sep;127(1):212-21 PubMed
Theor Appl Genet. 2002 Apr;104(5):840-844 PubMed
Arch Virol. 2001;146(11):2255-61 PubMed
Plant Mol Biol. 1985 Jan;5(1):41-53 PubMed
J Biol Chem. 2001 Nov 9;276(45):41963-8 PubMed
Plant Mol Biol. 2001 Jan;45(2):229-44 PubMed
Genome. 2001 Aug;44(4):716-28 PubMed
Nat Genet. 1998 Sep;20(1):43-5 PubMed
Genetica. 1997;100(1-3):241-52 PubMed
Nucleic Acids Res. 1997 Mar 1;25(5):955-64 PubMed
Trends Genet. 2000 Jun;16(6):276-7 PubMed
Mol Gen Genet. 1999 Jan;260(6):593-602 PubMed
Bioinformatics. 2001 Sep;17(9):849-50 PubMed
J Virol. 2001 Feb;75(4):1834-41 PubMed
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed
EMBO J. 1991 Jul;10(7):1911-8 PubMed
Plant Cell Physiol. 1999 Sep;40(9):933-41 PubMed
Plant Physiol. 2001 Mar;125(3):1283-92 PubMed
Genes Genet Syst. 1999 Dec;74(6):299-307 PubMed
Mol Biol Evol. 1999 Sep;16(9):1198-207 PubMed
J Genet. 2002 Aug;81(2):73-86 PubMed
Annu Rev Biochem. 1996;65:741-68 PubMed
Genetica. 1997;100(1-3):15-28 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 PubMed
Plant Mol Biol. 1998 Feb;36(3):365-76 PubMed
Plant Cell Rep. 1996 Sep;15(12):949-53 PubMed
Genome Res. 2001 Dec;11(12):2041-9 PubMed
Genome. 1996 Feb;39(1):9-16 PubMed
Genome Res. 2001 Jul;11(7):1187-97 PubMed
Genome Res. 2000 Jul;10(7):908-15 PubMed
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14177-9 PubMed
EMBO J. 1993 Jun;12(6):2521-8 PubMed
Genome Res. 2002 Jan;12(1):122-31 PubMed
Nucleic Acids Res. 2003 Jan 1;31(1):383-7 PubMed
J Mol Biol. 1994 Mar 25;237(2):182-92 PubMed
Plant Mol Biol. 1998 May;37(2):363-75 PubMed
Nucleic Acids Res. 1996 Sep 1;24(17):3439-52 PubMed
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6897-902 PubMed
Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 PubMed
J Mol Biol. 1998 Dec 11;284(4):1095-111 PubMed
J Mol Biol. 2001 Jan 19;305(3):567-80 PubMed
Theor Appl Genet. 1996 Mar;92(3-4):297-307 PubMed
Genetica. 1999;107(1-3):87-93 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
Science. 1991 Apr 5;252(5002):88-95 PubMed
J Virol. 2001 Dec;75(23):11709-19 PubMed
Plant Cell. 1999 Sep;11(9):1769-1784 PubMed
Cell. 1989 Mar 24;56(6):911-3 PubMed
Curr Opin Plant Biol. 1998 Apr;1(2):103-8 PubMed
Trends Microbiol. 1996 Sep;4(9):347-53 PubMed
Mol Biotechnol. 1996 Jun;5(3):233-41 PubMed
Science. 1996 Nov 1;274(5288):765-8 PubMed
Plant J. 1998 Mar;13(5):699-705 PubMed
Mol Biol Evol. 2002 Nov;19(11):1832-45 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Curr Genet. 2002 Jul;41(4):189-98 PubMed
Jpn J Genet. 1993 Feb;68(1):35-46 PubMed
Antiviral Res. 1997 Dec;36(3):139-56 PubMed
A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons
Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat
PIGY, a new plant envelope-class LTR retrotransposon
GENBANK
AY299394, AY299395, AY299396, AY299397, AY299398