Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced

. 2003 Oct ; 53 (3) : 399-410.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid14750527

We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546-562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.

Zobrazit více v PubMed

Trends Genet. 2000 Apr;16(4):151-2 PubMed

Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5301-6 PubMed

Plant Mol Biol. 1996 May;31(2):295-306 PubMed

Nat Rev Genet. 2002 May;3(5):329-41 PubMed

EMBO J. 1990 Oct;9(10):3353-62 PubMed

Science. 1994 Jul 29;265(5172):615-21 PubMed

Annu Rev Genet. 1999;33:479-532 PubMed

Cell Mol Life Sci. 2001 Aug;58(9):1246-62 PubMed

Cell. 1981 Nov;27(1 Pt 2):1-3 PubMed

Plant Mol Biol. 2000 Jan;42(1):251-69 PubMed

Plant Mol Biol. 1999 Aug;40(6):903-10 PubMed

Genome Res. 2002 Oct;12(10):1455-65 PubMed

J Virol. 1995 Sep;69(9):5320-31 PubMed

J Mol Biol. 1998 Sep 18;282(2):359-68 PubMed

Plant Physiol. 2001 Sep;127(1):212-21 PubMed

Theor Appl Genet. 2002 Apr;104(5):840-844 PubMed

Arch Virol. 2001;146(11):2255-61 PubMed

Plant Mol Biol. 1985 Jan;5(1):41-53 PubMed

J Biol Chem. 2001 Nov 9;276(45):41963-8 PubMed

Plant Mol Biol. 2001 Jan;45(2):229-44 PubMed

Genome. 2001 Aug;44(4):716-28 PubMed

Nat Genet. 1998 Sep;20(1):43-5 PubMed

Genetica. 1997;100(1-3):241-52 PubMed

Nucleic Acids Res. 1997 Mar 1;25(5):955-64 PubMed

Trends Genet. 2000 Jun;16(6):276-7 PubMed

Mol Gen Genet. 1999 Jan;260(6):593-602 PubMed

Bioinformatics. 2001 Sep;17(9):849-50 PubMed

J Virol. 2001 Feb;75(4):1834-41 PubMed

Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed

EMBO J. 1991 Jul;10(7):1911-8 PubMed

Plant Cell Physiol. 1999 Sep;40(9):933-41 PubMed

Plant Physiol. 2001 Mar;125(3):1283-92 PubMed

Genes Genet Syst. 1999 Dec;74(6):299-307 PubMed

Mol Biol Evol. 1999 Sep;16(9):1198-207 PubMed

J Genet. 2002 Aug;81(2):73-86 PubMed

Annu Rev Biochem. 1996;65:741-68 PubMed

Genetica. 1997;100(1-3):15-28 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 PubMed

Plant Mol Biol. 1998 Feb;36(3):365-76 PubMed

Plant Cell Rep. 1996 Sep;15(12):949-53 PubMed

Genome Res. 2001 Dec;11(12):2041-9 PubMed

Genome. 1996 Feb;39(1):9-16 PubMed

Genome Res. 2001 Jul;11(7):1187-97 PubMed

Genome Res. 2000 Jul;10(7):908-15 PubMed

Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14177-9 PubMed

EMBO J. 1993 Jun;12(6):2521-8 PubMed

Genome Res. 2002 Jan;12(1):122-31 PubMed

Nucleic Acids Res. 2003 Jan 1;31(1):383-7 PubMed

J Mol Biol. 1994 Mar 25;237(2):182-92 PubMed

Plant Mol Biol. 1998 May;37(2):363-75 PubMed

Nucleic Acids Res. 1996 Sep 1;24(17):3439-52 PubMed

Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6897-902 PubMed

Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 PubMed

J Mol Biol. 1998 Dec 11;284(4):1095-111 PubMed

J Mol Biol. 2001 Jan 19;305(3):567-80 PubMed

Theor Appl Genet. 1996 Mar;92(3-4):297-307 PubMed

Genetica. 1999;107(1-3):87-93 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Science. 1991 Apr 5;252(5002):88-95 PubMed

J Virol. 2001 Dec;75(23):11709-19 PubMed

Plant Cell. 1999 Sep;11(9):1769-1784 PubMed

Cell. 1989 Mar 24;56(6):911-3 PubMed

Curr Opin Plant Biol. 1998 Apr;1(2):103-8 PubMed

Trends Microbiol. 1996 Sep;4(9):347-53 PubMed

Mol Biotechnol. 1996 Jun;5(3):233-41 PubMed

Science. 1996 Nov 1;274(5288):765-8 PubMed

Plant J. 1998 Mar;13(5):699-705 PubMed

Mol Biol Evol. 2002 Nov;19(11):1832-45 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

Curr Genet. 2002 Jul;41(4):189-98 PubMed

Jpn J Genet. 1993 Feb;68(1):35-46 PubMed

Antiviral Res. 1997 Dec;36(3):139-56 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus

. 2023 Feb 16 ; 14 (1) : 876. [epub] 20230216

Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification

. 2019 ; 10 () : 1. [epub] 20190103

A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

. 2011 Dec ; 139 (11-12) : 1543-55. [epub] 20120429

Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre

. 2008 Nov ; 280 (5) : 427-36. [epub] 20080902

Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes

. 2008 ; 16 (7) : 961-76. [epub] 20081015

Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

. 2007 Nov 21 ; 8 () : 427. [epub] 20071121

Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.)

. 2007 Nov ; 26 (11) : 1985-98. [epub] 20070801

Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat

. 2006 Sep ; 276 (3) : 254-63. [epub] 20060707

Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement

. 2006 Jun ; 173 (2) : 1047-56. [epub] 20060403

Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification

. 2006 ; 47 (3) : 221-30.

PIGY, a new plant envelope-class LTR retrotransposon

. 2005 Mar ; 273 (1) : 43-53. [epub] 20050125

Zobrazit více v PubMed

GENBANK
AY299394, AY299395, AY299396, AY299397, AY299398

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace