Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor

. 2024 Feb ; 11 (6) : e2307306. [epub] 20231208

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38063838

Grantová podpora
International Max Planck Research School for Chemistry and Physics of Quantum Materials
Max Planck Society
TRR 288 - 422213477 Deutsche Forschungsgemeinschaft
EXC 2147 Deutsche Forschungsgemeinschaft
390858940 Deutsche Forschungsgemeinschaft
Johannes Gutenberg University Grant TopDyn

Progress in magnetoelectric materials is hindered by apparently contradictory requirements for time-reversal symmetry broken and polar ferroelectric electronic structure in common ferromagnets and antiferromagnets. Alternative routes can be provided by recent discoveries of a time-reversal symmetry breaking anomalous Hall effect (AHE) in noncollinear magnets and altermagnets, but hitherto reported bulk materials are not polar. Here, the authors report the observation of a spontaneous AHE in doped AgCrSe2 , a layered polar semiconductor with an antiferromagnetic coupling between Cr spins in adjacent layers. The anomalous Hall resistivity 3 μ Ω c m μΩcm is comparable to the largest observed in compensated magnetic systems to date, and is rapidly switched off when the angle of an applied magnetic field is rotated to ≈80° from the crystalline c-axis. The ionic gating experiments show that the anomalous Hall conductivity magnitude can be enhanced by modulating the p-type carrier density. They also present theoretical results that suggest the AHE is driven by Berry curvature due to noncollinear antiferromagnetic correlations among Cr spins, which are consistent with the previously suggested magnetic ordering in AgCrSe2 . The results open the possibility to study the interplay of magnetic and ferroelectric-like responses in this fascinating class of materials.

Zobrazit více v PubMed

Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Rev. Mod. Phys. 2010, 82, 1539.

Šmejkal L., MacDonald A. H., Sinova J., Nakatsuji S., Jungwirth T., Nat. Rev. Mater. 2022, 7, 482.

Xiao D., Chang M.‐C., Niu Q., Rev. Mod. Phys. 2010, 82, 1959.

Šmejkal L., González‐Hernández R., Jungwirth T., Sinova J., Sci. Adv. 2020, 6, eaaz8809. PubMed PMC

Samanta K., Ležaić M., Merte M., Freimuth F., Blügel S., Mokrousov Y., J. Appl. Phys. 2020, 127, 213904.

Mazin I. I., Koepernik K., Johannes M. D., González‐Hernández R., Šmejkal L., Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2108924118. PubMed PMC

Guin S. N., Xu Q., Kumar N., Kung H.‐H., Dufresne S., Le C., Vir P., Michiardi M., Pedersen T., Gorovikov S., Zhdanovich S., Manna K., Auffermann G., Schnelle W., Gooth J., Shekhar C., Damascelli A., Sun Y., Felser C., Adv. Mater. 2021, 33, 2006301. PubMed PMC

Šmejkal L., Sinova J., Jungwirth T., Phys. Rev. X 2022, 12, 040501.

Šmejkal L., Sinova J., Jungwirth T., Phys. Rev. X 2022, 12, 031042.

Gonzalez Betancourt R. D., Zubáč J., Gonzalez‐Hernandez R., Geishendorf K., Šobáň Z., Springholz G., Olejník K., Šmejkal L., Sinova J., Jungwirth T., Goennenwein S. T. B., Thomas A., Reichlová H., Železný J., Kriegner D., Phys. Rev. Lett. 2023, 130, 036702. PubMed

Feng Z., Zhou X., Šmejkal L., Wu L., Zhu Z., Guo H., González‐Hernández R., Wang X., Yan H., Qin P., Zhang X., Wu H., Chen H., Meng Z., Liu L., Xia Z., Sinova J., Jungwirth T., Liu Z., Nat. Electron. 2022, 5, 735.

Bychkov Y. A., Rashba É. I., JETP Lett. 1984, 39, 78.

Manchon A., Koo H. C., Nitta J., Frolov S., Duine R., Nat. Mater. 2015, 14, 871. PubMed

Avci C. O., Garello K., Ghosh A., Gabureac M., Alvarado S. F., Gambardella P., Nat. Phys. 2015, 11, 570.

Fiebig M., Lottermoser T., Meier D., Trassin M., Nat. Rev. Mater. 2016, 1, 1.

Ideue T., Hamamoto K., Koshikawa S., Ezawa M., Shimizu S., Kaneko Y., Tokura Y., Nagaosa N., Iwasa Y., Nat. Phys. 2017, 13, 578.

Bréhin J., Chen Y., D'Antuono M., Varotto S., Stornaiuolo D., Piamonteze C., Varignon J., Salluzzo M., Bibes M., Nat. Phys. 2023, 19, 823.

Landau L., Lifshitz E., Pitaevskii L., Electrodynamics of Continuous Media: Volume 8, Course of theoretical physics, Elsevier Science, Amsterdam: 1995.

The Hall pseudovector components correspond to the antisymmetric components of the anomalous Hall conductivity tensor, i.e.

Sunko V., Rosner H., Kushwaha P., Khim S., Mazzola F., Bawden L., Clark O., Riley J., Kasinathan D., Haverkort M., Kim T. K., Hoesch M., Fujii J., Vobornik I., Mackenzie A. P., King P. D. C., Nature 2017, 549, 492. PubMed

Seki S., Onose Y., Tokura Y., Phys. Rev. Lett. 2008, 101, 067204. PubMed

Singh K., Maignan A., Martin C., Simon C., Chem. Mater. 2009, 21, 5007.

Xu X., Zhong T., Zuo N., Li Z., Li D., Pi L., Chen P., Wu M., Zhai T., Zhou X., ACS Nano 2022, 16, 8141. PubMed

Gascoin F., Maignan A., Chem. Mater. 2011, 23, 2510.

Li B., Wang H., Kawakita Y., Zhang Q., Feygenson M., Yu H., Wu D., Ohara K., Kikuchi T., Shibata K., Yamada T., Ning X. K., Chen Y., He J. Q., Vaknin D., Wu R. Q., Nakajima K., Kanatzidis M. G., Nat. Mater. 2018, 17, 226. PubMed

Ding J., Niedziela J. L., Bansal D., Wang J., He X., May A. F., Ehlers G., Abernathy D. L., Said A., Alatas A., Ren Y., Arya G., Delaire O., Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 3930. PubMed PMC

Baenitz M., Piva M. M., Luther S., Sichelschmidt J., Ranjith K. M., Dawczak‐Debicki H., Ajeesh M. O., Kim S.‐J., Siemann G., Bigi C., Manuel P., Khalyavin D., Sokolov D. A., Mokhtari P., Zhang H., Yasuoka H., King P. D. C., Vinai G., Polewczyk V., Torelli P., Wosnitza J., Burkhardt U., Schmidt B., Rosner H., Wirth S., Kühne H., Nicklas M., Schmidt M., Phys. Rev. B 2021, 104, 134410.

Takahashi H., Akiba T., Mayo A. H., Akiba K., Miyake A., Tokunaga M., Mori H., Arita R., Ishiwata S., Phys. Rev. Mater. 2022, 6, 054602.

Shiomi Y., Akiba T., Takahashi H., Ishiwata S., Adv. Electron. Mater. 2018, 4, 1800174.

Engelsman F., Wiegers G., Jellinek F., Van Laar B., J. Solid State Chem. 1973, 6, 574.

Damay F., Petit S., Rols S., Braendlein M., Daou R., Elkaïm E., Fauth F., Gascoin F., Martin C., Maignan A., Sci. Rep. 2016, 6, 1. PubMed PMC

Zhang H., Berthod C., Berger H., Giamarchi T., Morpurgo A. F., Nano Lett. 2019, 19, 8836. PubMed

Gutiérrez‐Lezama I., Ubrig N., Ponomarev E., Morpurgo A. F., Nat. Rev. Phys. 2021, 3, 508.

Dzyaloshinsky I., J. Phys. Chem. Solids 1958, 4, 241.

Moriya T., Phys. Rev. 1960, 120, 91.

Liu X., Hsu H.‐C., Liu C.‐X., Phys. Rev. Lett. 2013, 111, 086802. PubMed

Chen H., Niu Q., MacDonald A. H., Phys. Rev. Lett. 2014, 112, 017205. PubMed

Battilomo R., Scopigno N., Ortix C., Phys. Rev. Res. 2021, 3, L012006. PubMed

Zhou J., Zhang W., Lin Y.‐C., Cao J., Zhou Y., Jiang W., Du H., Tang B., Shi J., Jiang B., Cao X., Lin B., Fu Q., Zhu C., Guo W., Huang Y., Yao Y., Parkin S. S. P., Zhou J., Gao Y., Wang Y., Hou Y., Yao Y., Suenaga K., Wu X., Liu Z., Nature 2022, 609, 46. PubMed

Lesne E., Saǧlam Y. G., Battilomo R., Mercaldo M. T., van Thiel T. C., Filippozzi U., Noce C., Cuoco M., Steele G. A., Ortix C., Caviglia A. D., Nat. Mater. 2023, 22, 576. PubMed PMC

Najít záznam

Citační ukazatele

Možnosti archivace