Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
International Max Planck Research School for Chemistry and Physics of Quantum Materials
Max Planck Society
TRR 288 - 422213477
Deutsche Forschungsgemeinschaft
EXC 2147
Deutsche Forschungsgemeinschaft
390858940
Deutsche Forschungsgemeinschaft
Johannes Gutenberg University Grant TopDyn
PubMed
38063838
PubMed Central
PMC10853720
DOI
10.1002/advs.202307306
Knihovny.cz E-zdroje
- Klíčová slova
- Berry curvature, anomalous Hall effect, ionic gating, magnetism, polar structure,
- Publikační typ
- časopisecké články MeSH
Progress in magnetoelectric materials is hindered by apparently contradictory requirements for time-reversal symmetry broken and polar ferroelectric electronic structure in common ferromagnets and antiferromagnets. Alternative routes can be provided by recent discoveries of a time-reversal symmetry breaking anomalous Hall effect (AHE) in noncollinear magnets and altermagnets, but hitherto reported bulk materials are not polar. Here, the authors report the observation of a spontaneous AHE in doped AgCrSe2 , a layered polar semiconductor with an antiferromagnetic coupling between Cr spins in adjacent layers. The anomalous Hall resistivity 3 μ Ω c m $\mu \Omega \, \textnormal {cm}$ is comparable to the largest observed in compensated magnetic systems to date, and is rapidly switched off when the angle of an applied magnetic field is rotated to ≈80° from the crystalline c-axis. The ionic gating experiments show that the anomalous Hall conductivity magnitude can be enhanced by modulating the p-type carrier density. They also present theoretical results that suggest the AHE is driven by Berry curvature due to noncollinear antiferromagnetic correlations among Cr spins, which are consistent with the previously suggested magnetic ordering in AgCrSe2 . The results open the possibility to study the interplay of magnetic and ferroelectric-like responses in this fascinating class of materials.
Institut für Physik Johannes Gutenberg Universität Mainz 55128 Mainz Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Praha 6 162 00 Czech Republic
Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany
Max Planck Institute for the Physics of Complex Systems 01187 Dresden Germany
Zobrazit více v PubMed
Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Rev. Mod. Phys. 2010, 82, 1539.
Šmejkal L., MacDonald A. H., Sinova J., Nakatsuji S., Jungwirth T., Nat. Rev. Mater. 2022, 7, 482.
Xiao D., Chang M.‐C., Niu Q., Rev. Mod. Phys. 2010, 82, 1959.
Šmejkal L., González‐Hernández R., Jungwirth T., Sinova J., Sci. Adv. 2020, 6, eaaz8809. PubMed PMC
Samanta K., Ležaić M., Merte M., Freimuth F., Blügel S., Mokrousov Y., J. Appl. Phys. 2020, 127, 213904.
Mazin I. I., Koepernik K., Johannes M. D., González‐Hernández R., Šmejkal L., Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2108924118. PubMed PMC
Guin S. N., Xu Q., Kumar N., Kung H.‐H., Dufresne S., Le C., Vir P., Michiardi M., Pedersen T., Gorovikov S., Zhdanovich S., Manna K., Auffermann G., Schnelle W., Gooth J., Shekhar C., Damascelli A., Sun Y., Felser C., Adv. Mater. 2021, 33, 2006301. PubMed PMC
Šmejkal L., Sinova J., Jungwirth T., Phys. Rev. X 2022, 12, 040501.
Šmejkal L., Sinova J., Jungwirth T., Phys. Rev. X 2022, 12, 031042.
Gonzalez Betancourt R. D., Zubáč J., Gonzalez‐Hernandez R., Geishendorf K., Šobáň Z., Springholz G., Olejník K., Šmejkal L., Sinova J., Jungwirth T., Goennenwein S. T. B., Thomas A., Reichlová H., Železný J., Kriegner D., Phys. Rev. Lett. 2023, 130, 036702. PubMed
Feng Z., Zhou X., Šmejkal L., Wu L., Zhu Z., Guo H., González‐Hernández R., Wang X., Yan H., Qin P., Zhang X., Wu H., Chen H., Meng Z., Liu L., Xia Z., Sinova J., Jungwirth T., Liu Z., Nat. Electron. 2022, 5, 735.
Bychkov Y. A., Rashba É. I., JETP Lett. 1984, 39, 78.
Manchon A., Koo H. C., Nitta J., Frolov S., Duine R., Nat. Mater. 2015, 14, 871. PubMed
Avci C. O., Garello K., Ghosh A., Gabureac M., Alvarado S. F., Gambardella P., Nat. Phys. 2015, 11, 570.
Fiebig M., Lottermoser T., Meier D., Trassin M., Nat. Rev. Mater. 2016, 1, 1.
Ideue T., Hamamoto K., Koshikawa S., Ezawa M., Shimizu S., Kaneko Y., Tokura Y., Nagaosa N., Iwasa Y., Nat. Phys. 2017, 13, 578.
Bréhin J., Chen Y., D'Antuono M., Varotto S., Stornaiuolo D., Piamonteze C., Varignon J., Salluzzo M., Bibes M., Nat. Phys. 2023, 19, 823.
Landau L., Lifshitz E., Pitaevskii L., Electrodynamics of Continuous Media: Volume 8, Course of theoretical physics, Elsevier Science, Amsterdam: 1995.
The Hall pseudovector components correspond to the antisymmetric components of the anomalous Hall conductivity tensor, i.e.
Sunko V., Rosner H., Kushwaha P., Khim S., Mazzola F., Bawden L., Clark O., Riley J., Kasinathan D., Haverkort M., Kim T. K., Hoesch M., Fujii J., Vobornik I., Mackenzie A. P., King P. D. C., Nature 2017, 549, 492. PubMed
Seki S., Onose Y., Tokura Y., Phys. Rev. Lett. 2008, 101, 067204. PubMed
Singh K., Maignan A., Martin C., Simon C., Chem. Mater. 2009, 21, 5007.
Xu X., Zhong T., Zuo N., Li Z., Li D., Pi L., Chen P., Wu M., Zhai T., Zhou X., ACS Nano 2022, 16, 8141. PubMed
Gascoin F., Maignan A., Chem. Mater. 2011, 23, 2510.
Li B., Wang H., Kawakita Y., Zhang Q., Feygenson M., Yu H., Wu D., Ohara K., Kikuchi T., Shibata K., Yamada T., Ning X. K., Chen Y., He J. Q., Vaknin D., Wu R. Q., Nakajima K., Kanatzidis M. G., Nat. Mater. 2018, 17, 226. PubMed
Ding J., Niedziela J. L., Bansal D., Wang J., He X., May A. F., Ehlers G., Abernathy D. L., Said A., Alatas A., Ren Y., Arya G., Delaire O., Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 3930. PubMed PMC
Baenitz M., Piva M. M., Luther S., Sichelschmidt J., Ranjith K. M., Dawczak‐Debicki H., Ajeesh M. O., Kim S.‐J., Siemann G., Bigi C., Manuel P., Khalyavin D., Sokolov D. A., Mokhtari P., Zhang H., Yasuoka H., King P. D. C., Vinai G., Polewczyk V., Torelli P., Wosnitza J., Burkhardt U., Schmidt B., Rosner H., Wirth S., Kühne H., Nicklas M., Schmidt M., Phys. Rev. B 2021, 104, 134410.
Takahashi H., Akiba T., Mayo A. H., Akiba K., Miyake A., Tokunaga M., Mori H., Arita R., Ishiwata S., Phys. Rev. Mater. 2022, 6, 054602.
Shiomi Y., Akiba T., Takahashi H., Ishiwata S., Adv. Electron. Mater. 2018, 4, 1800174.
Engelsman F., Wiegers G., Jellinek F., Van Laar B., J. Solid State Chem. 1973, 6, 574.
Damay F., Petit S., Rols S., Braendlein M., Daou R., Elkaïm E., Fauth F., Gascoin F., Martin C., Maignan A., Sci. Rep. 2016, 6, 1. PubMed PMC
Zhang H., Berthod C., Berger H., Giamarchi T., Morpurgo A. F., Nano Lett. 2019, 19, 8836. PubMed
Gutiérrez‐Lezama I., Ubrig N., Ponomarev E., Morpurgo A. F., Nat. Rev. Phys. 2021, 3, 508.
Dzyaloshinsky I., J. Phys. Chem. Solids 1958, 4, 241.
Moriya T., Phys. Rev. 1960, 120, 91.
Liu X., Hsu H.‐C., Liu C.‐X., Phys. Rev. Lett. 2013, 111, 086802. PubMed
Chen H., Niu Q., MacDonald A. H., Phys. Rev. Lett. 2014, 112, 017205. PubMed
Battilomo R., Scopigno N., Ortix C., Phys. Rev. Res. 2021, 3, L012006. PubMed
Zhou J., Zhang W., Lin Y.‐C., Cao J., Zhou Y., Jiang W., Du H., Tang B., Shi J., Jiang B., Cao X., Lin B., Fu Q., Zhu C., Guo W., Huang Y., Yao Y., Parkin S. S. P., Zhou J., Gao Y., Wang Y., Hou Y., Yao Y., Suenaga K., Wu X., Liu Z., Nature 2022, 609, 46. PubMed
Lesne E., Saǧlam Y. G., Battilomo R., Mercaldo M. T., van Thiel T. C., Filippozzi U., Noce C., Cuoco M., Steele G. A., Ortix C., Caviglia A. D., Nat. Mater. 2023, 22, 576. PubMed PMC