Prediction of unconventional magnetism in doped FeSb2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
34649995
PubMed Central
PMC8594493
DOI
10.1073/pnas.2108924118
PII: 2108924118
Knihovny.cz E-zdroje
- Klíčová slova
- altermagnetism, anomalous Hall effect, antiferromagnetism, first principles calculations, magnetooptics,
- Publikační typ
- časopisecké články MeSH
It is commonly believed that the energy bands of typical collinear antiferromagnets (AFs), which have zero net magnetization, are Kramers spin-degenerate. Kramers nondegeneracy is usually associated with a global time-reversal symmetry breaking (e.g., via ferromagnetism) or with a combination of spin-orbit interaction and broken spatial inversion symmetry. Recently, another type of spin splitting was demonstrated to emerge in some collinear magnets that are fully spin compensated by symmetry, nonrelativistic, and not even necessarily noncentrosymmetric. These materials feature nonzero spin density staggered in real space as seen in traditional AFs but also spin splitting in momentum space, generally seen only in ferromagnets. This results in a combination of materials characteristics typical of both ferromagnets and AFs. Here, we discuss this recently discovered class with application to a well-known semiconductor, FeSb2, and predict that with certain alloying, it becomes magnetic and metallic and features the aforementioned magnetic dualism. The calculated energy bands split antisymmetrically with respect to spin-degenerate nodal surfaces rather than nodal points, as in the case of spin-orbit splitting. The combination of a large (0.2-eV) spin splitting, compensated net magnetization with metallic ground state, and a specific magnetic easy axis generates a large anomalous Hall conductivity (∼150 S/cm) and a sizable magnetooptical Kerr effect, all deemed to be hallmarks of nonzero net magnetization. We identify a large contribution to the anomalous response originating from the spin-orbit interaction gapped anti-Kramers nodal surfaces, a mechanism distinct from the nodal lines and Weyl points in ferromagnets.
Center for Computational Materials Science Naval Research Laboratory Washington DC 20375
Center for Quantum Science and Engineering George Mason University Fairfax VA 22030
Department of Physics and Astronomy George Mason University Fairfax VA 22030;
Institut für Physik Johannes Gutenberg Universität Mainz 55 128 Mainz Germany
Institute of Physics Czech Academy of Sciences 162 00 Praha 6 Czech Republic
Zobrazit více v PubMed
Šmejkal L., González-Hernandez R., Jungwirth T., Sinova J., Crystal hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). PubMed PMC
Ahn K. H., Hariki A., Lee K. W., Kuneš J., Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).
Hayami S., Yanagi Y., Kusunose H., Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).
Yuan L. D., Wang Z., Luo J. W., Rashba E., Zunger A., Giant momentum-dependent spin splitting in centrosymmetric low z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Noda Y., Ohno K., Nakamura S., Momentum-dependent band spin splitting in semiconducting MnO2: A density functional calculation. Phys. Chem. Chem. Phys. 18, 13294–13303 (2016). PubMed
López-Moreno S., Romero A. H., Mejía-López J., Muñoz A., Roshchin I. V., First-principles study of electronic, vibrational, elastic, and magnetic properties of FeF{}_{2} as a function of pressure. Phys. Rev. B Condens. Matter Mater. Phys. 85, 134110 (2012).
Feng Z., et al. ., Observation of the crystal Hall effect in a collinear antiferromagnet. arXiv [Preprint] (2020). https://arxiv.org/abs/2002.08712 (Accessed 24 September 2021).
Reichlová H., et al. ., Macroscopic time reversal symmetry breaking arising from antiferromagnetic Zeeman effect. arXiv [Preprint] (2020). https://arxiv.org/abs/2012.15651 (Accessed 24 September 2021).
Samanta K., et al. ., Crystal Hall and crystal magneto-optical effect in thin films of SrRuO{}_{3}. J. Appl. Phys. 127, 213904 (2020).
González-Hernández R., et al. ., Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021). PubMed
Naka M., Motome Y., Seo H., Perovskite as a spin current generator. Phys. Rev. B 103, 125114 (2021).
Šmejkal L., Hellenes A. B., González-Hernández R., Sinova J., Jungwirth T., Giant and tunneling magnetoresistance effects from anisotropic and valley-dependent spin-momentum interactions in antiferromagnets. arXiv [Preprint] (2021). https://arxiv.org/abs/2103.12664 (Accessed 24 September 2021).
Shao D.-F., Zhang S.-H., Li M., Tsymbal E. Y., Spin-neutral currents for spintronics. arXiv [Preprint] (2021). https://arxiv.org/abs/2103.09219 (Accessed 24 September 2021).
Homes C., et al. ., Unusual electronic and vibrational properties in the colossal thermopower material FeS PubMed PMC
Herzog A., et al. ., Strong electron correlations in FeS
Sun P., Oeschler N., Johnsen S., Iversen B. B., Steglich F., Narrow band gap and enhanced thermoelectricity in PubMed
Kang C. J., Kotliar G., Study for material analogs of FeS
Tomczak J., Haule K., Miyake T., Georges A., Kotliar G., Thermopower of correlated semiconductors: Application to FeA
Bentien A., Madsen G., Johnsen S., Iversen B., Experimental and theoretical investigations of strongly correlated FeS
Xu K. J., et al. ., Metallic surface states in a correlated d-electron topological kondo insulator candidate FeS PubMed PMC
Hu R., Mitrović V., Petrovic C., Anisotropy in the magnetic and transport properties of
Hu R., Mitrović V., Petrovic C., Anisotropy in the magnetic and transport properties of
Gosálbez-Martínez D., Souza I., Vanderbilt D., Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 92, 085138 (2015).
Kim K., et al. ., Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018). PubMed
Liu E., et al. ., Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). PubMed PMC
Lukoyanov A. V., Mazurenko V. V., Anisimov V. I., Sigrist M., Rice T. M., The semiconductor-to-ferromagnetic-metal transition in FeS
Kuhn G., Mankovsky S., Ebert H., Regus M., Bensch W., Electronic structure and magnetic properties of CrS
Tomczak J., Thermoelectricity in correlated narrow-gap semiconductors. J. Phys. Cond. Matter 30, 183001 (2018). PubMed
Šmejkal L., Železný J., Sinova J., Jungwirth T., Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017). PubMed
Šmejkal L., Sinova J., Jungwirth T., Altermagnetism: A third magnetic class delimited by spin symmetry groups. arXiv [Preprint] (2021). https://arxiv.org/abs/2105.05820 (Accessed 24 September 2021).
Wu W., et al. ., Nodal surface semimetals: Theory and material realization. Phys. Rev. B 97, 115125 (2018).
Feng W., Guo G. Y., Zhou J., Yao Y., Niu Q., Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X=Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).
Higo T., et al. ., Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 12, 73–78 (2018). PubMed PMC
Feng W., et al. ., Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020). PubMed PMC
Sivadas N., Okamoto S., Xiao D., Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016). PubMed
Smejkal L., MacDonald A. H., Sinova J., Nakatsuji S., Jungwirth T., Anomalous Hall antiferromagnets. arXiv [Preprint] (2021). https://arxiv.org/abs/2107.03321 (Accessed 24 September 2021).
Shao D. F., Ding J., Gurung G., Zhang S. H., Tsymbal E. Y., Interfacial crystal hall effect reversible by ferroelectric polarization. Phys. Rev. Appl. 15, 024057 (2021).
Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993). PubMed
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Blöchl P. E., Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). PubMed
Petrovic C., Kim J., Bud’ko S., Goldman A., Canfield P., Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeS
Koepernik K., Eschrig H., Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1743–1757 (1999).
Blaha P., Schwarz K., Madsen G. K. H., Kvasnicka D., Luitz J., Wien2k (Vienna University of Technology, Vienna, Austria, 2002).
Koyama T., Nakamura H., Kohara T., Takahashi Y., Magnetization process of narrow-gap semiconductor FeS
Zaliznyak I. A., Savici A. T., Garlea V. O., Hu R., Petrovic C., Absence of localized-spin magnetism in the narrow-gap semiconductor FeSb2. Phys. Rev. B Condens. Matter Mater. Phys. 83, 184414 (2011).
Herath U., et al. ., Pyprocar: A python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).
Pizzi G., et al. ., Wannier90 as a community code: New features and applications. J. Phys. Condens. Matter 32, 165902 (2020). PubMed
Wu Q. S., Zhang S. N., Song H. F., Troyer M., Soluyanov A. A., WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2017).
Eschrig H., Koepernik K., Tight-binding models for the iron-based superconductors. Phys. Rev. B Condens. Matter Mater. Phys. 80, 104503 (2009).
Wang X., Yates J. R., Souza I., Vanderbilt D., Ab initio calculation of the anomalous hall conductivity by wannier interpolation. Phys. Rev. B Condens. Matter Mater. Phys. 74, 195118 (2006).
Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
Direct observation of altermagnetic band splitting in CrSb thin films
Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2
Altermagnetic lifting of Kramers spin degeneracy
Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor