Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction

. 2023 Feb 26 ; 12 (3) : . [epub] 20230226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36979061

Grantová podpora
19-10976Y Czech Science Foundation

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the post-transcriptional regulation of biological processes. miRNAs regulate transcripts through direct binding involving the Argonaute protein family. The exact rules of binding are not known, and several in silico miRNA target prediction methods have been developed to date. Deep learning has recently revolutionized miRNA target prediction. However, the higher predictive power comes with a decreased ability to interpret increasingly complex models. Here, we present a novel interpretation technique, called attribution sequence alignment, for miRNA target site prediction models that can interpret such deep learning models on a two-dimensional representation of miRNA and putative target sequence. Our method produces a human readable visual representation of miRNA:target interactions and can be used as a proxy for the further interpretation of biological concepts learned by the neural network. We demonstrate applications of this method in the clustering of experimental data into binding classes, as well as using the method to narrow down predicted miRNA binding sites on long transcript sequences. Importantly, the presented method works with any neural network model trained on a two-dimensional representation of interactions and can be easily extended to further domains such as protein-protein interactions.

Zobrazit více v PubMed

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

Wightman B., Ha I., Ruvkun G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI

Bartel D.P. Metazoan MicroRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. PubMed DOI PMC

Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921. PubMed DOI

Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science. 2001;294:858–862. doi: 10.1126/science.1065062. PubMed DOI

Lee R.C., Ambros V. An Extensive Class of Small RNAs in Caenorhabditis elegans. Science. 2001;294:862–864. doi: 10.1126/science.1065329. PubMed DOI

Shabalina S.A., Koonin E.V. Origins and Evolution of Eukaryotic RNA Interference. Trends Ecol. Evol. 2008;23:578–587. doi: 10.1016/j.tree.2008.06.005. PubMed DOI PMC

Vidigal J.A., Ventura A. The Biological Functions of MiRNAs: Lessons from in Vivo Studies. Trends Cell Biol. 2015;25:137–147. doi: 10.1016/j.tcb.2014.11.004. PubMed DOI PMC

Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the Answers in Sight? Nat. Rev. Genet. 2008;9:102–114. doi: 10.1038/nrg2290. PubMed DOI

Dueck A., Ziegler C., Eichner A., Berezikov E., Meister G. MicroRNAs Associated with the Different Human Argonaute Proteins. Nucleic Acids Res. 2012;40:9850–9862. doi: 10.1093/nar/gks705. PubMed DOI PMC

Carrington J.C., Ambros V. Role of MicroRNAs in Plant and Animal Development. Science. 2003;301:336–338. doi: 10.1126/science.1085242. PubMed DOI

Esquela-Kerscher A., Slack F.J. Oncomirs—MicroRNAs with a Role in Cancer. Nat. Rev. Cancer. 2006;6:259–269. doi: 10.1038/nrc1840. PubMed DOI

Rupaimoole R., Slack F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI

Li J., Tan S., Kooger R., Zhang C., Zhang Y. MicroRNAs as Novel Biological Targets for Detection and Regulation. Chem. Soc. Rev. 2013;43:506–517. doi: 10.1039/C3CS60312A. PubMed DOI

Hausser J., Zavolan M. Identification and Consequences of MiRNA–Target Interactions—Beyond Repression of Gene Expression. Nat. Rev. Genet. 2014;15:599–612. doi: 10.1038/nrg3765. PubMed DOI

Bracken C.P., Scott H.S., Goodall G.J. A Network-Biology Perspective of MicroRNA Function and Dysfunction in Cancer. Nat. Rev. Genet. 2016;17:719–732. doi: 10.1038/nrg.2016.134. PubMed DOI

Lewis B.P., Shih I., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115:787–798. doi: 10.1016/S0092-8674(03)01018-3. PubMed DOI

Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Broughton J.P., Lovci M.T., Huang J.L., Yeo G.W., Pasquinelli A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC

Moore M.J., Scheel T.K.H., Luna J.M., Park C.Y., Fak J.J., Nishiuchi E., Rice C.M., Darnell R.B. MiRNA–Target Chimeras Reveal MiRNA 3′-End Pairing as a Major Determinant of Argonaute Target Specificity. Nat. Commun. 2015;6:8864. doi: 10.1038/ncomms9864. PubMed DOI PMC

Helwak A., Tollervey D. Mapping the MiRNA Interactome by Cross-Linking Ligation and Sequencing of Hybrids (CLASH) Nat. Protoc. 2014;9:711–728. doi: 10.1038/nprot.2014.043. PubMed DOI PMC

Clark P.M., Loher P., Quann K., Brody J., Londin E.R., Rigoutsos I. Argonaute CLIP-Seq Reveals MiRNA Targetome Diversity across Tissue Types. Sci. Rep. 2014;4:5947. doi: 10.1038/srep05947. PubMed DOI PMC

Pasquinelli A.E. MicroRNAs and Their Targets: Recognition, Regulation and an Emerging Reciprocal Relationship. Nat. Rev. Genet. 2012;13:271–282. doi: 10.1038/nrg3162. PubMed DOI

Alexiou P., Maragkakis M., Papadopoulos G.L., Reczko M., Hatzigeorgiou A.G. Lost in Translation: An Assessment and Perspective for Computational MicroRNA Target Identification. Bioinformatics. 2009;25:3049–3055. doi: 10.1093/bioinformatics/btp565. PubMed DOI

Krüger J., Rehmsmeier M. RNAhybrid: MicroRNA Target Prediction Easy, Fast and Flexible. Nucleic Acids Res. 2006;34:W451–W454. doi: 10.1093/nar/gkl243. PubMed DOI PMC

Bernhart S.H., Tafer H., Mückstein U., Flamm C., Stadler P.F., Hofacker I.L. Partition Function and Base Pairing Probabilities of RNA Heterodimers. Algorithms Mol. Biol. 2006;1:3. doi: 10.1186/1748-7188-1-3. PubMed DOI PMC

Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC

Klimentová E., Hejret V., Krčmář J., Grešová K., Giassa I.-C., Alexiou P. MiRBind: A Deep Learning Method for MiRNA Binding Classification. Genes. 2022;13:2323. doi: 10.3390/genes13122323. PubMed DOI PMC

Helwak A., Kudla G., Dudnakova T., Tollervey D. Mapping the Human MiRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell. 2013;153:654–665. doi: 10.1016/j.cell.2013.03.043. PubMed DOI PMC

Grešová K., Alexiou P., Giassa I.-C. Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. Biology. 2022;11:1798. doi: 10.3390/biology11121798. PubMed DOI PMC

Breiman L. Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author) Stat. Sci. 2001;16:199–231. doi: 10.1214/ss/1009213726. DOI

Zeiler M.D., Fergus R. Visualizing and Understanding Convolutional Networks. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T., editors. Proceedings of the Computer Vision—ECCV 2014; Zurich, Switzerland. 5–12 September 2014; Cham, Switzerland: Springer International Publishing; 2014. pp. 818–833.

Zhou J., Troyanskaya O.G. Predicting Effects of Noncoding Variants with Deep Learning–Based Sequence Model. Nat. Methods. 2015;12:931–934. doi: 10.1038/nmeth.3547. PubMed DOI PMC

Zintgraf L.M., Cohen T.S., Adel T., Welling M. Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. arXiv. 2017 doi: 10.48550/arXiv.1702.04595.1702.04595 DOI

Alipanahi B., Delong A., Weirauch M.T., Frey B.J. Predicting the Sequence Specificities of DNA- and RNA-Binding Proteins by Deep Learning. Nat. Biotechnol. 2015;33:831–838. doi: 10.1038/nbt.3300. PubMed DOI

Wesolowska-Andersen A., Zhuo Yu G., Nylander V., Abaitua F., Thurner M., Torres J.M., Mahajan A., Gloyn A.L., McCarthy M.I. Deep Learning Models Predict Regulatory Variants in Pancreatic Islets and Refine Type 2 Diabetes Association Signals. eLife. 2020;9:e51503. doi: 10.7554/eLife.51503. PubMed DOI PMC

Kelley D.R., Reshef Y.A., Bileschi M., Belanger D., McLean C.Y., Snoek J. Sequential Regulatory Activity Prediction across Chromosomes with Convolutional Neural Networks. Genome Res. 2018;28:739–750. doi: 10.1101/gr.227819.117. PubMed DOI PMC

Talukder A., Zhang W., Li X., Hu H. A Deep Learning Method for miRNA/IsomiR Target Detection. Sci. Rep. 2022;12:10618. doi: 10.1038/s41598-022-14890-8. PubMed DOI PMC

Singh S., Yang Y., Póczos B., Ma J. Predicting Enhancer-Promoter Interaction from Genomic Sequence with Deep Neural Networks. Quant. Biol. 2019;7:122–137. doi: 10.1007/s40484-019-0154-0. PubMed DOI PMC

Kelley D.R., Snoek J., Rinn J.L. Basset: Learning the Regulatory Code of the Accessible Genome with Deep Convolutional Neural Networks. Genome Res. 2016;26:990–999. doi: 10.1101/gr.200535.115. PubMed DOI PMC

Simonyan K., Vedaldi A., Zisserman A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv. 2014 doi: 10.48550/arXiv.1312.6034.1312.6034 DOI

Springenberg J.T., Dosovitskiy A., Brox T., Riedmiller M. Striving for Simplicity: The All Convolutional Net. arXiv. 2015 doi: 10.48550/arXiv.1412.6806.1412.6806 DOI

Bach S., Binder A., Montavon G., Klauschen F., Müller K.-R., Samek W. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE. 2015;10:e0130140. doi: 10.1371/journal.pone.0130140. PubMed DOI PMC

Sundararajan M., Taly A., Yan Q. Axiomatic Attribution for Deep Networks; Proceedings of the 34th International Conference on Machine Learning; Sydney, NSW, Australia. 6–11 August 2017; Birmingham, UK: PMLR; 2017. pp. 3319–3328.

Shrikumar A., Greenside P., Kundaje A. Learning Important Features Through Propagating Activation Differences. arXiv. 2019 doi: 10.48550/arXiv.1704.02685.1704.02685 DOI

Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020;128:336–359. doi: 10.1007/s11263-019-01228-7. DOI

Lundberg S.M., Lee S.-I. A Unified Approach to Interpreting Model Predictions; Proceedings of the 31st International Conference on Neural Information Processing Systems; Long Beach, CA, USA. 4–9 December 2017; Red Hook, NY, USA: Curran Associates, Inc.; 2017.

Travis A.J., Moody J., Helwak A., Tollervey D., Kudla G. Hyb: A Bioinformatics Pipeline for the Analysis of CLASH (Crosslinking, Ligation and Sequencing of Hybrids) Data. Methods. 2014;65:263–273. doi: 10.1016/j.ymeth.2013.10.015. PubMed DOI PMC

He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 27–30 June 2016; pp. 770–778.

LeCun Y., Bengio Y., Hinton G. Deep Learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI

Smilkov D., Thorat N., Kim B., Viégas F., Wattenberg M. SmoothGrad: Removing Noise by Adding Noise. arXiv. 2017 doi: 10.48550/arXiv.1706.03825.1706.03825 DOI

Shapley L.S. A Value for N-Person Games. RAND Corporation; Santa Monica, CA, USA: 1952.

Smith T.F., Waterman M.S. Identification of Common Molecular Subsequences. J. Mol. Biol. 1981;147:195–197. doi: 10.1016/0022-2836(81)90087-5. PubMed DOI

Brennecke J., Stark A., Russell R.B., Cohen S.M. Principles of MicroRNA–Target Recognition. PLoS Biol. 2005;3:e85. doi: 10.1371/journal.pbio.0030085. PubMed DOI PMC

Klimentova E., Polacek J., Simecek P., Alexiou P. PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks. Front. Genet. 2020;11:568546. doi: 10.3389/fgene.2020.568546. PubMed DOI PMC

Zhou J., Theesfeld C.L., Yao K., Chen K.M., Wong A.K., Troyanskaya O.G. Deep Learning Sequence-Based Ab Initio Prediction of Variant Effects on Expression and Disease Risk. Nat. Genet. 2018;50:1171–1179. doi: 10.1038/s41588-018-0160-6. PubMed DOI PMC

Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F., Darbandi S.F., Knowles D., Li Y.I., Kosmicki J.A., Arbelaez J., Cui W., Schwartz G.B., et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019;176:535–548.e24. doi: 10.1016/j.cell.2018.12.015. PubMed DOI

Patwardhan R.P., Lee C., Litvin O., Young D.L., Pe’er D., Shendure J. High-Resolution Analysis of DNA Regulatory Elements by Synthetic Saturation Mutagenesis. Nat. Biotechnol. 2009;27:1173–1175. doi: 10.1038/nbt.1589. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace