Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling

. 2022 Dec 11 ; 11 (12) : . [epub] 20221211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36552307

Grantová podpora
19-10976Y Grantová Agentura České Republiky

MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. They are suggested to be involved in most biological processes of the cell primarily by targeting messenger RNAs (mRNAs) for cleavage or translational repression. Their binding to their target sites is mediated by the Argonaute (AGO) family of proteins. Thus, miRNA target prediction is pivotal for research and clinical applications. Moreover, transfer-RNA-derived fragments (tRFs) and other types of small RNAs have been found to be potent regulators of Ago-mediated gene expression. Their role in mRNA regulation is still to be fully elucidated, and advancements in the computational prediction of their targets are in their infancy. To shed light on these complex RNA-RNA interactions, the availability of good quality high-throughput data and reliable computational methods is of utmost importance. Even though the arsenal of computational approaches in the field has been enriched in the last decade, there is still a degree of discrepancy between the results they yield. This review offers an overview of the relevant advancements in the field of bioinformatics and machine learning and summarizes the key strategies utilized for small RNA target prediction. Furthermore, we report the recent development of high-throughput sequencing technologies, and explore the role of non-miRNA AGO driver sequences.

Zobrazit více v PubMed

Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI

Mizuno T., Chou M.Y., Inouye M. A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA) Proc. Natl. Acad. Sci. USA. 1984;81:1966–1970. doi: 10.1073/pnas.81.7.1966. PubMed DOI PMC

Lalaouna D., Simoneau-Roy M., Lafontaine D., Massé E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim. et Biophys. Acta. 2013;1829:742–747. doi: 10.1016/j.bbagrm.2013.02.013. PubMed DOI

Bartel D.P. Metazoan MicroRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. PubMed DOI PMC

O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–655. doi: 10.1016/j.cell.2009.01.035. PubMed DOI PMC

Ozata D.M., Gainetdinov I., Zoch A., O’Carroll D., Zamore P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2018;20:89–108. doi: 10.1038/s41576-018-0073-3. PubMed DOI

Li Z., Rana T.M. Molecular Mechanisms of RNA-Triggered Gene Silencing Machineries. Accounts Chem. Res. 2012;45:1122–1131. doi: 10.1021/ar200253u. PubMed DOI PMC

Huang X., Tóth K.F., Aravin A.A. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017;33:882–894. doi: 10.1016/j.tig.2017.09.002. PubMed DOI PMC

Shabalina S.A., Koonin E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008;23:578–587. doi: 10.1016/j.tree.2008.06.005. PubMed DOI PMC

Lewis B.P., Burge C.B., Bartel D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI

Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Jackson A.L., Burchard J., Schelter J., Chau B.N., Cleary M., Lim L., Linsley P.S. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. Rna. 2006;12:1179–1187. doi: 10.1261/rna.25706. PubMed DOI PMC

Neumeier J., Meister G. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. [(accessed on 9 August 2022)];Front. Plant Sci. 2021 11 doi: 10.3389/fpls.2020.526455. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2020.526455. PubMed DOI PMC

Borges F., Martienssen R.A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 2015;16:727–741. doi: 10.1038/nrm4085. PubMed DOI PMC

Vaucheret H. Plant argonautes. Trends Plant Sci. 2008;13:350–358. doi: 10.1016/j.tplants.2008.04.007. PubMed DOI

Melnyk C.W., Molnar A., Baulcombe D. Intercellular and systemic movement of RNA silencing signals. EMBO J. 2011;30:3553–3563. doi: 10.1038/emboj.2011.274. PubMed DOI PMC

Voinnet O., Vain P., Angell S., Baulcombe D.C. Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell. 1998;95:177–187. doi: 10.1016/S0092-8674(00)81749-3. PubMed DOI

Buhtz A., Springer F., Chappell L., Baulcombe D., Kehr J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 2007;53:739–749. doi: 10.1111/j.1365-313X.2007.03368.x. PubMed DOI

Dexheimer P.J., Cochella L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020;8:409. doi: 10.3389/fcell.2020.00409. PubMed DOI PMC

Millar A., Waterhouse P.M. Plant and animal microRNAs: Similarities and differences. Funct. Integr. Genom. 2005;5:129–135. doi: 10.1007/s10142-005-0145-2. PubMed DOI

Axtell M.J., Westholm J., Lai E.C. Vive la différence: Biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011;12:221. doi: 10.1186/gb-2011-12-4-221. PubMed DOI PMC

Vogel J., Luisi B.F. Hfq and its constellation of RNA. Nat. Rev. Genet. 2011;9:578–589. doi: 10.1038/nrmicro2615. PubMed DOI PMC

Melamed S., Adams P.P., Zhang A., Zhang H., Storz G. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. Mol. Cell. 2019;77:411–425.e7. doi: 10.1016/j.molcel.2019.10.022. PubMed DOI PMC

Storz G., Vogel J., Wassarman K.M. Regulation by Small RNAs in Bacteria: Expanding Frontiers. Mol. Cell. 2011;43:880–891. doi: 10.1016/j.molcel.2011.08.022. PubMed DOI PMC

Papenfort K., Vanderpool C.K. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 2015;39:362–378. doi: 10.1093/femsre/fuv016. PubMed DOI PMC

Wagner E.G.H., Romby P. Small RNAs in Bacteria and Archaea: Who they are, what they do, and how they do it. Adv. Genet. 2015;90:133–208. doi: 10.1016/bs.adgen.2015.05.001. PubMed DOI

Hör J., Matera G., Vogel J., Gottesman S., Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus. 2020;9 doi: 10.1128/ecosalplus.ESP-0030-2019. PubMed DOI PMC

Babski J., Maier L.-K., Heyer R., Jaschinski K., Prasse D., Jäger D., Randau L., Schmitz R.a., Marchfelder A., Soppa J. Small regulatory RNAs in Archaea. RNA Biol. 2014;11:484–493. doi: 10.4161/rna.28452. PubMed DOI PMC

Bhatt S., Egan M., Jenkins V., Muche S., El-Fenej J. The Tip of the Iceberg: On the Roles of Regulatory Small RNAs in the Virulence of Enterohemorrhagic and Enteropathogenic Escherichia coli. Front. Cell Infect. Microbiol. 2016;6:105. doi: 10.3389/fcimb.2016.00105. PubMed DOI PMC

Lease R.A., Belfort M. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by form-ing alternative structures. Proc. Natl. Acad. Sci. USA. 2000;97:9919–9924. doi: 10.1073/pnas.170281497. PubMed DOI PMC

Lee Y.S., Shibata Y., Malhotra A., Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs) Genes Dev. 2009;23:2639–2649. doi: 10.1101/gad.1837609. PubMed DOI PMC

Haussecker D., Huang Y., Lau A., Parameswaran P., Fire A.Z., Kay M.A. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16:673–695. doi: 10.1261/rna.2000810. PubMed DOI PMC

Soares A.R., Fernandes N., Reverendo M., Araújo H.R., Oliveira J.L., Moura G.M.R., Santos M.A.S. Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Mol. Biol. 2015;16:22. doi: 10.1186/s12867-015-0050-8. PubMed DOI PMC

Schimmel P. The emerging complexity of the tRNA world: Mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 2017;19:45–58. doi: 10.1038/nrm.2017.77. PubMed DOI

Kumar P., Anaya J., Mudunuri S.B., Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014;12:78. doi: 10.1186/s12915-014-0078-0. PubMed DOI PMC

Chen Q., Zhang X., Shi J., Yan M., Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 2021;46:790–804. doi: 10.1016/j.tibs.2021.05.001. PubMed DOI PMC

Kumar P., Kuscu C., Dutta A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs) Trends Biochem. Sci. 2016;41:679–689. doi: 10.1016/j.tibs.2016.05.004. PubMed DOI PMC

Kuscu C., Kumar P., Kiran M., Su Z., Malik A., Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA. 2018;24:1093–1105. doi: 10.1261/rna.066126.118. PubMed DOI PMC

Hafner M., Landthaler M., Burger L., Khorshid M., Hausser J., Berninger P., Rothballer A., Ascano M., Jr., Jungkamp A.-C., Munschauer M., et al. Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell. 2010;141:129–141. doi: 10.1016/j.cell.2010.03.009. PubMed DOI PMC

Burroughs A.M., Ando Y., De Hoon M.J.L., Tomaru Y., Suzuki H., Hayashizaki Y., Daub C. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011;8:158–177. doi: 10.4161/rna.8.1.14300. PubMed DOI PMC

Majdalani N., Chen S., Murrow J., John K.S., Gottesman S. Regulation of RpoS by a novel small RNA: The characterization of RprA. Mol. Microbiol. 2004;39:1382–1394. doi: 10.1111/j.1365-2958.2001.02329.x. PubMed DOI

Honda S., Loher P., Shigematsu M., Palazzo J.P., Suzuki R., Imoto I., Rigoutsos I., Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA. 2015;112:E3816–E3825. doi: 10.1073/pnas.1510077112. PubMed DOI PMC

Magee R.G., Telonis A.G., Loher P., Londin E., Rigoutsos I. Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer. Sci. Rep. 2018;8:5314. doi: 10.1038/s41598-018-22488-2. PubMed DOI PMC

Asha S., Soniya E.V. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages. Sci. Rep. 2017;7:srep41052. doi: 10.1038/srep41052. PubMed DOI PMC

Chen Z., Sun Y., Yang X., Wu Z., Guo K., Niu X., Wang Q., Ruan J., Bu W., Gao S. Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs. PLoS ONE. 2017;12:e0176458. doi: 10.1371/journal.pone.0176458. PubMed DOI PMC

Li S. Human 28s rRNA 5′ terminal derived small RNA inhibits ribosomal protein mRNA levels. bioRxiv. 2019 doi: 10.1101/618520. bioRxiv:618520. DOI

Guan L. Age-Related Argonaute Loading of Ribosomal RNA Fragments. MicroRNA. 2020;9:142–152. doi: 10.2174/2211536608666190920165705. PubMed DOI

Guan L., Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: Potential targets and interaction mechanisms. Nucleic Acids Res. 2021;49:4085–4103. doi: 10.1093/nar/gkab190. PubMed DOI PMC

Samuel A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959;3:210–229. doi: 10.1147/rd.33.0210. DOI

Bishop C.M., Nasrabadi N.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) Springer; Berlin/Heidelberg, Germany: 2006.

LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI

Pinzón N., Li B., Martinez L., Sergeeva A., Presumey J., Apparailly F., Seitz H. microRNA target prediction programs predict many false positives. Genome Res. 2016;27:234–245. doi: 10.1101/gr.205146.116. PubMed DOI PMC

Helwak A., Kudla G., Dudnakova T., Tollervey D. Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell. 2013;153:654–665. doi: 10.1016/j.cell.2013.03.043. PubMed DOI PMC

Seok H., Ham J., Jang E.-S., Chi S.W. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Mol. Cells. 2016;39:375–381. doi: 10.14348/molcells.2016.0013. PubMed DOI PMC

Imig J., Brunschweiger A., Brümmer A., Guennewig B., Mittal N., Kishore S., Tsikrika P., Gerber A.P., Zavolan M., Hall J. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction. Nat. Chem. Biol. 2015;11:107–114. doi: 10.1038/nchembio.1713. PubMed DOI

Li J., Zhang Y. Current experimental strategies for intracellular target identification of microRNA. ExRNA. 2019;1:6. doi: 10.1186/s41544-018-0002-9. DOI

Riolo G., Cantara S., Marzocchi C., Ricci C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020;4:1. doi: 10.3390/mps4010001. PubMed DOI PMC

Boutz D.R., Collins P.J., Suresh U., Lu M., Ramírez C.M., Fernández-Hernando C., Huang Y., Abreu R.D.S., Le S.-Y., Shapiro B.A., et al. Two-tiered Approach Identifies a Network of Cancer and Liver Disease-related Genes Regulated by miR-122. J. Biol. Chem. 2011;286:18066–18078. doi: 10.1074/jbc.M110.196451. PubMed DOI PMC

Wolter J.M., Kotagama K., Pierre-Bez A.C., Firago M., Mangone M. 3′LIFE: A functional assay to detect miRNA targets in high-throughput. Nucleic Acids Res. 2014;42:e132. doi: 10.1093/nar/gku626. PubMed DOI PMC

Carter M., Shieh J. Biochemical Assays and Intracellular Signaling. In: Carter M., Shieh J., editors. Guide to Research Techniques in Neuroscience. 2nd ed. Academic Press; San Diego, CA, USA: 2015. pp. 311–343. DOI

Lim L.P., Lau N.C., Garrett-Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., Johnson J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–773. doi: 10.1038/nature03315. PubMed DOI

Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. The impact of microRNAs on protein output. Nature. 2008;455:64–71. doi: 10.1038/nature07242. PubMed DOI PMC

Guo H., Ingolia N.T., Weissman J.S., Bartel D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–840. doi: 10.1038/nature09267. PubMed DOI PMC

Karginov F.V., Conaco C., Xuan Z., Schmidt B.H., Parker J.S., Mandel G., Hannon G.J. A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. USA. 2007;104:19291–19296. doi: 10.1073/pnas.0709971104. PubMed DOI PMC

Chi S.W., Zang J.B., Mele A., Darnell R.B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature. 2009;460:479–486. doi: 10.1038/nature08170. PubMed DOI PMC

König J., Zarnack K., Rot G., Curk T., Kayikci M., Zupan B., Turner D.J., Luscombe N.M., Ule J. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010;17:909–915. doi: 10.1038/nsmb.1838. PubMed DOI PMC

Van Nostrand E.L., Pratt G.A., Shishkin A.A., Gelboin-Burkhart C., Fang M.Y., Sundararaman B., Blue S.M., Nguyen T.B., Surka C., Elkins K., et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) Nat. Methods. 2016;13:508–514. doi: 10.1038/nmeth.3810. PubMed DOI PMC

Manakov S.A., Shishkin A.A., Yee B.A., Shen K.A., Cox D.C., Park S.S., Foster H.M., Chapman K.B., Yeo G.W., Van Nostrand E.L. Scalable and deep profiling of mRNA targets for individual microRNAs with chimeric eCLIP. BioRxiv. 2022 doi: 10.1101/2022.02.13.480296. BioRxiv:2022.02.13.480296. DOI

Helwak A., Tollervey D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH) Nat. Protoc. 2014;9:711–728. doi: 10.1038/nprot.2014.043. PubMed DOI PMC

Hsu R.-J., Yang H.-J., Tsai H.-J. Labeled microRNA pull-down assay system: An experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res. 2009;37:e77. doi: 10.1093/nar/gkp274. PubMed DOI PMC

Baigude H., Ahsanullah, Li Z., Zhou Y., Rana T.M. miR-TRAP: A Benchtop Chemical Biology Strategy to Identify microRNA Targets. Angew. Chem. Int. Ed. 2012;51:5880–5883. doi: 10.1002/anie.201201512. PubMed DOI PMC

Li J., Huang L., Xiao X., Chen Y., Wang X., Zhou Z., Zhang C., Zhang Y. Photoclickable MicroRNA for the Intracellular Target Identification of MicroRNAs. J. Am. Chem. Soc. 2016;138:15943–15949. doi: 10.1021/jacs.6b08521. PubMed DOI

Lim R.K.V., Lin Q. Photoinducible Bioorthogonal Chemistry: A Spatiotemporally Controllable Tool to Visualize and Perturb Proteins in Live Cells. Accounts Chem. Res. 2011;44:828–839. doi: 10.1021/ar200021p. PubMed DOI PMC

Zhou Y., Peng H., Cui Q., Zhou Y. tRFTar: Prediction of tRF-target gene interactions via systemic re-analysis of Argonaute CLIP-seq datasets. Methods. 2020;187:57–67. doi: 10.1016/j.ymeth.2020.10.006. PubMed DOI

Xiao Q., Gao P., Huang X., Chen X., Chen Q., Lv X., Fu Y., Song Y., Wang Z. tRFTars: Predicting the targets of tRNA-derived fragments. J. Transl. Med. 2021;19:88. doi: 10.1186/s12967-021-02731-7. PubMed DOI PMC

Naskulwar K., Peña-Castillo L. sRNARFTarget: A fast machine-learning-based approach for transcriptome-wide sRNA target prediction. RNA Biol. 2021;19:44–54. doi: 10.1080/15476286.2021.2012058. PubMed DOI PMC

Lück S., Kreszies T., Strickert M., Schweizer P., Kuhlmann M., Douchkov D. siRNA-Finder (si-Fi) Software for RNAi-Target Design and Off-Target Prediction. Front. Plant Sci. 2019;10:1023. doi: 10.3389/fpls.2019.01023. PubMed DOI PMC

Alkan F., Wenzel A., Palasca O., Kerpedjiev P., Rudebeck A.F., Stadler P.F., Hofacker I.L., Gorodkin J. RIsearch2: Suffix array-based large-scale prediction of RNA–RNA interactions and siRNA off-targets. Nucleic Acids Res. 2017;45:e60. doi: 10.1093/nar/gkw1325. PubMed DOI PMC

Gumienny R., Zavolan M. Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res. 2015;43:1380–1391. doi: 10.1093/nar/gkv050. PubMed DOI PMC

Rasmussen S.H., Jacobsen A., Krogh A. cWords—Systematic microRNA regulatory motif discovery from mRNA expression data. Silence. 2013;4:2–9. doi: 10.1186/1758-907X-4-2. PubMed DOI PMC

King A.M., Vanderpool C., Degnan P.H. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs. mSphere. 2019;4:e00561-18. doi: 10.1128/mSphere.00561-18. PubMed DOI PMC

Dai X., Zhuang Z., Zhao P.X. psRNATarget: A plant small RNA target analysis server (2017 release) Nucleic Acids Res. 2018;46:W49–W54. doi: 10.1093/nar/gky316. PubMed DOI PMC

Mann M., Wright P.R., Backofen R. IntaRNA 2.0: Enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res. 2017;45:W435–W439. doi: 10.1093/nar/gkx279. PubMed DOI PMC

Kery M.B., Feldman M., Livny J., Tjaden B. TargetRNA2: Identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res. 2014;42:W124–W129. doi: 10.1093/nar/gku317. PubMed DOI PMC

Wright P.R., Richter A.S., Papenfort K., Mann M., Vogel J., Hess W.R., Backofen R., Georg J. Comparative genomics boosts target prediction for bacterial small RNAs. Proc. Natl. Acad. Sci. USA. 2013;110:E3487–E3496. doi: 10.1073/pnas.1303248110. PubMed DOI PMC

Wright P.R., Georg J., Mann M., Sorescu D.A., Richter A.S., Lott S., Kleinkauf R., Hess W.R., Backofen R. CopraRNA and IntaRNA: Predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 2014;42:W119–W123. doi: 10.1093/nar/gku359. PubMed DOI PMC

Eggenhofer F., Tafer H., Stadler P.F., Hofacker I.L. RNApredator: Fast accessibility-based prediction of sRNA targets. Nucleic Acids Res. 2011;39:W149–W154. doi: 10.1093/nar/gkr467. PubMed DOI PMC

Ying X., Cao Y., Wu J., Liu Q., Cha L., Li W. sTarPicker: A Method for Efficient Prediction of Bacterial sRNA Targets Based on a Two-Step Model for Hybridization. PLoS ONE. 2011;6:e22705. doi: 10.1371/journal.pone.0022705. PubMed DOI PMC

Talukder A., Zhang W., Li X., Hu H. A deep learning method for miRNA/isomiR target detection. bioRxiv. 2022 doi: 10.1038/s41598-022-14890-8. bioRxiv:2022.04.04.487002. PubMed DOI PMC

Maxwell E.K., Campbell J.D., Spira A., Baxevanis A.D. SubmiRine: Assessing variants in microRNA targets using clinical genomic data sets. Nucleic Acids Res. 2015;43:3886–3898. doi: 10.1093/nar/gkv256. PubMed DOI PMC

Min S., Lee B., Yoon S. TargetNet: Functional microRNA target prediction with deep neural networks. Bioinformatics. 2021;38:671–677. doi: 10.1093/bioinformatics/btab733. PubMed DOI

Shakyawar S., Southekal S., Guda C. mintRULS: Prediction of miRNA–mRNA Target Site Interactions Using Regularized Least Square Method. Genes. 2022;13:1528. doi: 10.3390/genes13091528. PubMed DOI PMC

Gu T., Zhao X., Barbazuk W.B., Lee J.-H. miTAR: A hybrid deep learning-based approach for predicting miRNA targets. BMC Bioinform. 2021;22:96. doi: 10.1186/s12859-021-04026-6. PubMed DOI PMC

Xie W., Luo J., Pan C., Liu Y. SG-LSTM-FRAME: A computational frame using sequence and geometrical information via LSTM to predict miRNA–gene associations. Briefings Bioinform. 2020;22:2032–2042. doi: 10.1093/bib/bbaa022. PubMed DOI

Chu Y.-W., Chang K.-P., Chen C.-W., Liang Y.-T., Soh Z.T., Hsieh L. miRgo: Integrating various off-the-shelf tools for identification of microRNA–target interactions by heterogeneous features and a novel evaluation indicator. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-58336-5. PubMed DOI PMC

Kyrollos D.G., Reid B., Dick K., Green J.R. RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction. Sci. Rep. 2020;10:11770. doi: 10.1038/s41598-020-68251-4. PubMed DOI PMC

Zheng X., Chen L., Li X., Zhang Y., Xu S., Huang X. Prediction of miRNA targets by learning from interaction sequences. PLoS ONE. 2020;15:e0232578. doi: 10.1371/journal.pone.0232578. PubMed DOI PMC

Jiang H., Wang J., Li M., Lan W., Wu F.-X., Pan Y. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018;17:1032–1041. doi: 10.1109/TCBB.2018.2873299. PubMed DOI

Maji R.K., Khatua S., Ghosh Z. A Supervised Ensemble Approach for Sensitive microRNA Target Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020;17:37–46. doi: 10.1109/TCBB.2018.2858252. PubMed DOI

Jiang H., Yang M., Chen X., Li M., Li Y., Wang J. miRTMC: A miRNA Target Prediction Method Based on Matrix Completion Algorithm. IEEE J. Biomed. Health Inform. 2020;24:3630–3641. doi: 10.1109/JBHI.2020.2987034. PubMed DOI

Yan J., Li Y., Zhu M. miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets; Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Seoul, Korea. 16–19 December 2020; pp. 2891–2897. DOI

Huang T., Huang X., Yao M. Min3: Predict microRNA target gene using an improved binding-site representation method and support vector machine. J. Bioinform. Comput. Biol. 2019;17:1950032. doi: 10.1142/S021972001950032X. PubMed DOI

Kang H., Ahn H., Jo K., Oh M., Kim S. mirTime: Identifying Condition-Specific Targets of MicroRNA in Time-series Transcript Data using Gaussian Process Model and Spherical Vector Clustering. Bioinformatics. 2019;37:1544–1553. doi: 10.1093/bioinformatics/btz306. PubMed DOI

Ding J., Li X., Hu H. CCmiR: A computational approach for competitive and cooperative microRNA binding prediction. Bioinformatics. 2017;34:198–206. doi: 10.1093/bioinformatics/btx606. PubMed DOI PMC

Wen M., Cong P., Zhang Z., Lu H., Li T. DeepMirTar: A deep-learning approach for predicting human miRNA targets. Bioinformatics. 2018;34:3781–3787. doi: 10.1093/bioinformatics/bty424. PubMed DOI

Pla A., Zhong X., Rayner S. miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts. PLoS Comput. Biol. 2018;14:e1006185. doi: 10.1371/journal.pcbi.1006185. PubMed DOI PMC

Mohebbi M., Ding L., Malmberg R.L., Momany C., Rasheed K., Cai L. Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex. J. Bioinform. Comput. Biol. 2018;16:1850013. doi: 10.1142/S0219720018500130. PubMed DOI

Koo J., Zhang J., Chaterji S. Tiresias: Context-sensitive Approach to Decipher the Presence and Strength of MicroRNA Regulatory Interactions. Theranostics. 2018;8:277–291. doi: 10.7150/thno.22065. PubMed DOI PMC

Oh M., Rhee S., Moon J.H., Chae H., Lee S., Kang J., Kim S. Literature-based condition-specific miRNA-mRNA target prediction. PLoS ONE. 2017;12:e0174999. doi: 10.1371/journal.pone.0174999. PubMed DOI PMC

Torkey H., Heath L.S., ElHefnawi M. MicroTarget: MicroRNA target gene prediction approach with application to breast cancer. J. Bioinform. Comput. Biol. 2017;15:1750013. doi: 10.1142/S0219720017500135. PubMed DOI

Bottini S., Hamouda-Tekaya N., Tanasa B., Zaragosi L.-E., Grandjean V., Repetto E., Trabucchi M. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res. 2017;45:e71. doi: 10.1093/nar/gkx007. PubMed DOI PMC

Ahadi A., Sablok G., Hutvagner G. miRTar2GO: A novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA–target interaction data. Nucleic Acids Res. 2016;45:e42. doi: 10.1093/nar/gkw1185. PubMed DOI PMC

L’Yi S., Jung D., Oh M., Kim B., Freishtat R.J., Giri M., Hoffman E., Seo J. miRTarVis+: Web-based interactive visual analytics tool for microRNA target predictions. Methods. 2017;124:78–88. doi: 10.1016/j.ymeth.2017.06.004. PubMed DOI

Van Peer G., De Paepe A., Stock M., Anckaert J., Volders P.-J., Vandesompele J., De Baets B., Waegeman W. miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure. Nucleic Acids Res. 2016;45:e51. doi: 10.1093/nar/gkw1260. PubMed DOI PMC

Lu Y., Leslie C.S. Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data. PLoS Comput. Biol. 2016;12:e1005026. doi: 10.1371/journal.pcbi.1005026. PubMed DOI PMC

Cheng S., Guo M., Wang C., Liu X., Liu Y., Wu X. MiRTDL: A Deep Learning Approach for miRNA Target Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015;13:1161–1169. doi: 10.1109/TCBB.2015.2510002. PubMed DOI

Ovando-Vázquez C., Lepe-Soltero D., Abreu-Goodger C. Improving microRNA target prediction with gene expression profiles. BMC Genom. 2016;17:364. doi: 10.1186/s12864-016-2695-1. PubMed DOI PMC

Lee B., Baek J., Park S., Yoon S. Deeptarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks; Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics; Northbrook, IL, USA. 7–10 August 2022; [(accessed on 8 April 2022)]. Available online: http://arxiv.org/abs/1603.09123.

Ding J., Li X., Hu H. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics. 2016;32:2768–2775. doi: 10.1093/bioinformatics/btw318. PubMed DOI PMC

Ghoshal A., Shankar R., Bagchi S., Grama A., Chaterji S. MicroRNA target prediction using thermodynamic and sequence curves. BMC Genom. 2015;16:999. doi: 10.1186/s12864-015-1933-2. PubMed DOI PMC

Wang Z., Xu W., Liu Y. Integrating full spectrum of sequence features into predicting functional microRNA–mRNA interactions. Bioinformatics. 2015;31:3529–3536. doi: 10.1093/bioinformatics/btv392. PubMed DOI PMC

Jung D., Kim B., Freishtat R.J., Giri M., Hoffman E., Seo J. miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc. 2015;9:S2. doi: 10.1186/1753-6561-9-S6-S2. PubMed DOI PMC

Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC

Bandyopadhyay S., Ghosh D., Mitra R., Zhao Z. MBSTAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci. Rep. 2015;5:8004. doi: 10.1038/srep08004. PubMed DOI PMC

Rennie W., Liu C., Carmack C.S., Wolenc A., Kanoria S., Lu J., Long D., Ding Y. STarMir: A web server for prediction of microRNA binding sites. Nucleic Acids Res. 2014;42:W114–W118. doi: 10.1093/nar/gku376. PubMed DOI PMC

Menor M., Ching T., Zhu X., Garmire D., Garmire L.X. mirMark: A site-level and UTR-level classifier for miRNA target prediction. Genome Biol. 2014;15:500. doi: 10.1186/s13059-014-0500-5. PubMed DOI PMC

Li Y., Liang C., Wong K.-C., Jin K., Zhang Z. Inferring probabilistic miRNA–mRNA interaction signatures in cancers: A role-switch approach. Nucleic Acids Res. 2014;42:e76. doi: 10.1093/nar/gku182. PubMed DOI PMC

Li Y., Goldenberg A., Wong K.-C., Zhang Z. A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics. 2013;30:621–628. doi: 10.1093/bioinformatics/btt599. PubMed DOI

Le T.D., Liu L., Tsykin A., Goodall G., Liu B., Sun B.-Y., Li J. Inferring microRNA–mRNA causal regulatory relationships from expression data. Bioinformatics. 2013;29:765–771. doi: 10.1093/bioinformatics/btt048. PubMed DOI

Majoros W.H., Lekprasert P., Mukherjee N., Skalsky R.L., Corcoran D.L., Cullen B.R., Ohler U. MicroRNA target site identification by integrating sequence and binding information. Nat. Chem. Biol. 2013;10:630–633. doi: 10.1038/nmeth.2489. PubMed DOI PMC

Khorshid M., Hausser J., Zavolan M., van Nimwegen E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods. 2013;10:253–255. doi: 10.1038/nmeth.2341. PubMed DOI

Incarnato D., Neri F., Diamanti D., Oliviero S. MREdictor: A two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. Nucleic Acids Res. 2013;41:8421–8433. doi: 10.1093/nar/gkt629. PubMed DOI PMC

Mendoza M.R., Da Fonseca G.C., Loss-Morais G., Alves R., Margis R., Bazzan A.L.C. RFMirTarget: Predicting Human MicroRNA Target Genes with a Random Forest Classifier. PLoS ONE. 2013;8:e70153. doi: 10.1371/journal.pone.0070153. PubMed DOI PMC

Ahmadi H., Ahmadi A., Azimzadeh-Jamalkandi S., Shoorehdeli M.A., Salehzadeh-Yazdi A., Bidkhori G., Masoudi-Nejad A. HomoTarget: A new algorithm for prediction of microRNA targets in Homo sapiens. Genomics. 2013;101:94–100. doi: 10.1016/j.ygeno.2012.11.005. PubMed DOI

Ben-Moshe N.B., Avraham R., Kedmi M., Zeisel A., Yitzhaky A., Yarden Y., Domany E. Context-specific microRNA analysis: Identification of functional microRNAs and their mRNA targets. Nucleic Acids Res. 2012;40:10614–10627. doi: 10.1093/nar/gks841. PubMed DOI PMC

Reczko M., Maragkakis M., Alexiou P., Grosse I., Hatzigeorgiou A.G. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771–776. doi: 10.1093/bioinformatics/bts043. PubMed DOI

Yue D., Guo M., Chen Y., Huang Y., Yue D., Guo M., Chen Y., Huang Y. A Bayesian decision fusion approach for microRNA target prediction. BMC Genom. 2012;13:S13. doi: 10.1186/1471-2164-13-S8-S13. PubMed DOI PMC

Vejnar C., Zdobnov E.M. miRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40:11673–11683. doi: 10.1093/nar/gks901. PubMed DOI PMC

Reczko M., Maragkakis M., Alexiou P., Papadopoulos G.L., Hatzigeorgiou A.G. Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data. Front. Genet. 2012;2:103. doi: 10.3389/fgene.2011.00103. PubMed DOI PMC

Stempor P.A., Cauchi M., Wilson P. MMpred: Functional miRNA—mRNA interaction analyses by miRNA expression prediction. BMC Genom. 2012;13:620. doi: 10.1186/1471-2164-13-620. PubMed DOI PMC

Chandra V., Girijadevi R., Nair A.S., Pillai S.S., Pillai R.M. MTar: A computational microRNA target prediction architecture for human transcriptome. BMC Bioinform. 2010;11:S2. doi: 10.1186/1471-2105-11-S1-S2. PubMed DOI PMC

Oulas A., Karathanasis N., Louloupi A., Iliopoulos I., Kalantidis K., Poirazi P. A new microRNA target prediction tool identifies a novel interaction of a putative miRNA with CCND2. RNA Biol. 2012;9:1196–1207. doi: 10.4161/rna.21725. PubMed DOI PMC

Marín R.M., Vaníček J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2010;39:19–29. doi: 10.1093/nar/gkq768. PubMed DOI PMC

Reyes-Herrera P.H., Ficarra E., Acquaviva A., Macii E. miREE: miRNA recognition elements ensemble. BMC Bioinform. 2011;12:454. doi: 10.1186/1471-2105-12-454. PubMed DOI PMC

Mitra R., Bandyopadhyay S. MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method. PLoS ONE. 2011;6:e24583. doi: 10.1371/journal.pone.0024583. PubMed DOI PMC

Oğul H., Umu S.U., Tuncel Y.Y., Akkaya M.S. A probabilistic approach to microRNA-target binding. Biochem. Biophys. Res. Commun. 2011;413:111–115. doi: 10.1016/j.bbrc.2011.08.065. PubMed DOI

Sturm M., Hackenberg M., Langenberger D., Frishman D. TargetSpy: A supervised machine learning approach for microRNA target prediction. BMC Bioinform. 2010;11:292. doi: 10.1186/1471-2105-11-292. PubMed DOI PMC

Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921. PubMed DOI

Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science. 2001;294:858–862. doi: 10.1126/science.1065062. PubMed DOI

Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–864. doi: 10.1126/science.1065329. PubMed DOI

Alexiou P., Maragkakis M., Papadopoulos G.L., Reczko M., Hatzigeorgiou A.G. Lost in translation: An assessment and perspective for computational microRNA target identification. Bioinformatics. 2009;25:3049–3055. doi: 10.1093/bioinformatics/btp565. PubMed DOI

Maragkakis M., Reczko M., Simossis V.A., Alexiou P., Papadopoulos G.L., Dalamagas T., Giannopoulos G., Goumas G.I., Koukis E., Kourtis K., et al. DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009;37:W273–W276. doi: 10.1093/nar/gkp292. PubMed DOI PMC

Gaidatzis D., van Nimwegen E., Hausser J., Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform. 2007;8:69. doi: 10.1186/1471-2105-8-69. PubMed DOI PMC

Enright A.J., John B., Gaul U., Tuschl T., Sander C., Marks D.S. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC

Griffiths-Jones S., Grocock R.J., Van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. PubMed DOI PMC

Kozomara A., Griffiths-Jones S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39:D152–D157. doi: 10.1093/nar/gkq1027. PubMed DOI PMC

Krek A., Grün D., Poy M.N., Wolf R., Rosenberg L., Epstein E.J., MacMenamin P., Da Piedade I., Gunsalus K.C., Stoffel M., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005;37:495–500. doi: 10.1038/ng1536. PubMed DOI

Kertesz M., Iovino N., Unnerstall U., Gaul U., Segal E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007;39:1278–1284. doi: 10.1038/ng2135. PubMed DOI

Miranda K.C., Huynh T., Tay Y., Ang Y.-S., Tam W.-L., Thomson A.M., Lim B., Rigoutsos I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell. 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031. PubMed DOI

Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Libbrecht M.W., Noble W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015;16:321–332. doi: 10.1038/nrg3920. PubMed DOI PMC

Zhang Z., Zhao Y., Liao X., Shi W., Li K., Zou Q., Peng S. Deep learning in omics: A survey and guideline. Briefings Funct. Genom. 2018;18:41–57. doi: 10.1093/bfgp/ely030. PubMed DOI

Koumakis L. Deep learning models in genomics; are we there yet? Comput. Struct. Biotechnol. J. 2020;18:1466–1473. doi: 10.1016/j.csbj.2020.06.017. PubMed DOI PMC

Quillet A., Anouar Y., Lecroq T., Dubessy C. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists. Comput. Struct. Biotechnol. J. 2021;19:5811–5825. doi: 10.1016/j.csbj.2021.10.025. PubMed DOI PMC

Greener J.G., Kandathil S.M., Moffat L., Jones D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2021;23:40–55. doi: 10.1038/s41580-021-00407-0. PubMed DOI

Bandyopadhyay S., Saha S., Maulik U., Deb K. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Trans. Evol. Comput. 2008;12:269–283. doi: 10.1109/TEVC.2007.900837. DOI

Dick K., Green J.R. Reciprocal Perspective for Improved Protein-Protein Interaction Prediction. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-30044-1. PubMed DOI PMC

Tokar T., Pastrello C., Rossos A.E.M., Abovsky M., Hauschild A.-C., Tsay M., Lu R., Jurisica I. mirDIP 4.1—Integrative database of human microRNA target predictions. Nucleic Acids Res. 2017;46:D360–D370. doi: 10.1093/nar/gkx1144. PubMed DOI PMC

Busch A., Richter A.S., Backofen R. IntaRNA: Efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics. 2008;24:2849–2856. doi: 10.1093/bioinformatics/btn544. PubMed DOI PMC

Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998;86:2278–2324. doi: 10.1109/5.726791. DOI

He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 27–30 June 2016; pp. 770–778. DOI

Hochreiter S., Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–1780. doi: 10.1162/neco.1997.9.8.1735. PubMed DOI

Zou J., Huss M., Abid A., Mohammadi P., Torkamani A., Telenti A. A primer on deep learning in genomics. Nat. Genet. 2018;51:12–18. doi: 10.1038/s41588-018-0295-5. PubMed DOI PMC

Rumelhart D.E., McClelland J.L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press; Cambridge, MA, USA: 1987. [(accessed on 2 October 2022)]. Learning Internal Representations by Error Propagation; pp. 318–362. Available online: https://ieeexplore.ieee.org/document/6302929.

Kern F., Backes C., Hirsch P., Fehlmann T., Hart M., Meese E., Keller A. What’s the target: Understanding two decades of in silico microRNA-target prediction. Briefings Bioinform. 2019;21:1999–2010. doi: 10.1093/bib/bbz111. PubMed DOI

Cao Y., Wu J., Liu Q., Zhao Y., Ying X., Cha L., Wang L., Li W. sRNATarBase: A comprehensive database of bacterial sRNA targets verified by experiments. RNA. 2010;16:2051–2057. doi: 10.1261/rna.2193110. PubMed DOI PMC

Wang J., Liu T., Zhao B., Lu Q., Wang Z., Cao Y., Li W. sRNATarBase 3.0: An updated database for sRNA-target interactions in bacteria. Nucleic Acids Res. 2015;44:D248–D253. doi: 10.1093/nar/gkv1127. PubMed DOI PMC

Lorenz R., Bernhart S.H., Honer Zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC

Tafer H., Hofacker I.L. RNAplex: A fast tool for RNA–RNA interaction search. Bioinformatics. 2008;24:2657–2663. doi: 10.1093/bioinformatics/btn193. PubMed DOI

Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Raden M., Ali S.M., Alkhnbashi O.S., Busch A., Costa F., Davis J.A., Eggenhofer F., Gelhausen R., Georg J., Heyne S., et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018;46:W25–W29. doi: 10.1093/nar/gky329. PubMed DOI PMC

Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Bernhart S.H., Hofacker I.L., Stadler P.F. Local RNA base pairing probabilities in large sequences. Bioinformatics. 2005;22:614–615. doi: 10.1093/bioinformatics/btk014. PubMed DOI

Axtell M.J. Classification and Comparison of Small RNAs from Plants. Annu. Rev. Plant Biol. 2013;64:137–159. doi: 10.1146/annurev-arplant-050312-120043. PubMed DOI

Bobrovskyy M., Vanderpool C.K. The small RNA SgrS: Roles in metabolism and pathogenesis of enteric bacteria. Front. Cell Infect. Microbiol. 2014;4:61. doi: 10.3389/fcimb.2014.00061. PubMed DOI PMC

Salvail H., Massé E. Regulating iron storage and metabolism with RNA: An overview of posttranscriptional controls of intracellular iron homeostasis. Wiley Interdiscip. Rev. RNA. 2011;3:26–36. doi: 10.1002/wrna.102. PubMed DOI

Massé E., Vanderpool C.K., Gottesman S. Effect of RyhB Small RNA on Global Iron Use in Escherichia Coli. J Bacteriol. 2005;187:6962–6971. doi: 10.1128/JB.187.20.6962-6971.2005. PubMed DOI PMC

Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC

Lalaouna D., Carrier M.-C., Semsey S., Brouard J.-S., Wang J., Wade J.T., Massé E. A 3′ External Transcribed Spacer in a tRNA Transcript Acts as a Sponge for Small RNAs to Prevent Transcriptional Noise. Mol. Cell. 2015;58:393–405. doi: 10.1016/j.molcel.2015.03.013. PubMed DOI

Han K., Tjaden B., Lory S. GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat. Microbiol. 2016;2:16239. doi: 10.1038/nmicrobiol.2016.239. PubMed DOI PMC

Melamed S., Peer A., Faigenbaum-Romm R., Gatt Y.E., Reiss N., Bar A., Altuvia Y., Argaman L., Margalit H. Global Mapping of Small RNA-Target Interactions in Bacteria. Mol. Cell. 2016;63:884–897. doi: 10.1016/j.molcel.2016.07.026. PubMed DOI PMC

Waters S.A., McAteer S.P., Kudla G., Pang I., Deshpande N.P., Amos T.G., Leong K.W., Wilkins M.R., Strugnell R., Gally D.L., et al. SmallRNAinteractome of pathogenic E. coli revealed through crosslinking ofRNase E. EMBO J. 2016;36:374–387. doi: 10.15252/embj.201694639. PubMed DOI PMC

Grosswendt S., Filipchyk A., Manzano M., Klironomos F., Schilling M., Herzog M., Gottwein E., Rajewsky N. Unambiguous Identification of miRNA:Target Site Interactions by Different Types of Ligation Reactions. Mol. Cell. 2014;54:1042–1054. doi: 10.1016/j.molcel.2014.03.049. PubMed DOI PMC

Chou C.-H., Chang N.-W., Shrestha S., Hsu S.-D., Lin Y.-L., Lee W.-H., Yang C.-D., Hong H.-C., Wei T.-Y., Tu S.-J., et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2015;44:D239–D247. doi: 10.1093/nar/gkv1258. PubMed DOI PMC

Huang H.-Y., Lin Y.-C., Cui S., Huang Y., Tang Y., Xu J., Bao J., Li Y., Wen J., Zuo H., et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2021;50:D222–D230. doi: 10.1093/nar/gkab1079. PubMed DOI PMC

Karagkouni D., Paraskevopoulou M.D., Chatzopoulos S., Vlachos I.S., Tastsoglou S., Kanellos I., Papadimitriou D., Kavakiotis I., Maniou S., Skoufos G., et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2017;46:D239–D245. doi: 10.1093/nar/gkx1141. PubMed DOI PMC

Vincent P., LaRochelle H., Bengio Y., Manzagol P.-A. Extracting and composing robust features with denoising autoencoders; Proceedings of the 25th International Conference on Machine Learning; Montreal, QC, Canada. 11–15 April 2016; pp. 1096–1103.

Thiam P., Kestler H., Schwenker F. Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals; Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods; Prague, Czech Republic. 19–21 February 2020; [(accessed on 8 August 2022)]. pp. 289–296. Available online: https://www.scitepress.org/Link.aspx?doi=10.5220/0008896102890296. DOI

John B., Enright A., Aravin A.A., Tuschl T., Sander C., Marks D.S. Human MicroRNA Targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363. PubMed DOI PMC

Maute R.L., Schneider C., Sumazin P., Holmes A., Califano A., Basso K., Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2013;110:1404–1409. doi: 10.1073/pnas.1206761110. PubMed DOI PMC

Zhang M., Li F., Wang J., He W., Li Y., Li H., Wei Z., Cao Y. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther. 2019;12:6371–6383. doi: 10.2147/OTT.S206861. PubMed DOI PMC

Moore M.J., Scheel T.K.H., Luna J.M., Park C.Y., Fak J.J., Nishiuchi E., Rice C.M., Darnell R.B. miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 2015;6:8864. doi: 10.1038/ncomms9864. PubMed DOI PMC

Haeussler M., Zweig A.S., Tyner C., Speir M.L., Rosenbloom K.R., Raney B.J., Lee C.M., Lee B.T., Hinrichs A., Gonzalez J.N., et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2018;47:D853–D858. doi: 10.1093/nar/gky1095. PubMed DOI PMC

Pliatsika V., Loher P., Magee R., Telonis A., Londin E., Shigematsu M., Kirino Y., Rigoutsos I. MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res. 2017;46:D152–D159. doi: 10.1093/nar/gkx1075. PubMed DOI PMC

Pruitt K.D., Tatusova T., Brown G.R., Maglott D.R. NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 2011;40:D130–D135. doi: 10.1093/nar/gkr1079. PubMed DOI PMC

Schultz N., Marenstein D.R., De Angelis D.A., Wang W.-Q., Nelander S., Jacobsen A., Marks D.S., Massagué J., Sander C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR. Silence. 2011;2:3–20. doi: 10.1186/1758-907X-2-3. PubMed DOI PMC

Wenzel A., Akbaşli E., Gorodkin J. RIsearch: Fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics. 2012;28:2738–2746. doi: 10.1093/bioinformatics/bts519. PubMed DOI PMC

Betel D., Koppal A., Agius P., Sander C., Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90. doi: 10.1186/gb-2010-11-8-r90. PubMed DOI PMC

Paraskevopoulou M.D., Georgakilas G., Kostoulas N., Vlachos I.S., Vergoulis T., Reczko M., Filippidis C., Dalamagas T., Hatzigeorgiou A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–W173. doi: 10.1093/nar/gkt393. PubMed DOI PMC

Wong N., Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2014;43:D146–D152. doi: 10.1093/nar/gku1104. PubMed DOI PMC

Šulc M., Marín R.M., Robins H.S., Vaníček J. PACCMIT/PACCMIT-CDS: Identifying microRNA targets in 3′ UTRs and coding sequences. Nucleic Acids Res. 2015;43:W474–W479. doi: 10.1093/nar/gkv457. PubMed DOI PMC

Davis J.A., Saunders S., Mann M., Backofen R. Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res. 2017;45:8745–8757. doi: 10.1093/nar/gkx605. PubMed DOI PMC

Lu C., Yang M., Li M., Li Y., Wu F.-X., Wang J. Predicting Human lncRNA-Disease Associations Based on Geometric Matrix Completion. IEEE J. Biomed. Health Inform. 2019;24:2420–2429. doi: 10.1109/JBHI.2019.2958389. PubMed DOI

Mørk S., Pletscher-Frankild S., Caro A.P., Gorodkin J., Jensen L.J. Protein-driven inference of miRNA-disease associations. Bioinformatics. 2013;30:392–397. doi: 10.1093/bioinformatics/btt677. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction

. 2023 Feb 26 ; 12 (3) : . [epub] 20230226

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace