miRBind: A Deep Learning Method for miRNA Binding Classification
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36553590
PubMed Central
PMC9777820
DOI
10.3390/genes13122323
PII: genes13122323
Knihovny.cz E-zdroje
- Klíčová slova
- CLASH, convolutional neural network, miRNA binding, miRNA:target prediction,
- MeSH
- algoritmy MeSH
- Argonaut proteiny genetika metabolismus MeSH
- deep learning * MeSH
- mikro RNA * genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Argonaut proteiny MeSH
- mikro RNA * MeSH
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
Central European Institute of Technology Masaryk University 60177 Brno Czech Republic
Faculty of Informatics Masaryk University 60200 Brno Czech Republic
Zobrazit více v PubMed
Bartel D.P. Metazoan MicroRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. PubMed DOI PMC
Lee R.C., Feinbaum R.L., Ambros V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Wightman B., Ha I., Ruvkun G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. Elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI
Pasquinelli A.E., Reinhart B.J., Slack F., Martindale M.Q., Kuroda M.I., Maller B., Hayward D.C., Ball E.E., Degnan B., Müller P., et al. Conservation of the Sequence and Temporal Expression of Let-7 Heterochronic Regulatory RNA. Nature. 2000;408:86–89. doi: 10.1038/35040556. PubMed DOI
Kozomara A., Griffiths-Jones S. MiRBase: Integrating MicroRNA Annotation and Deep-Sequencing Data. Nucleic Acids Res. 2011;39:D152–D157. doi: 10.1093/nar/gkq1027. PubMed DOI PMC
Adams L. Pri-MiRNA Processing: Structure Is Key. Nat. Rev. Genet. 2017;18:145. doi: 10.1038/nrg.2017.6. PubMed DOI
Lund E., Güttinger S., Calado A., Dahlberg J.E., Kutay U. Nuclear Export of MicroRNA Precursors. Science. 2004;303:95–98. doi: 10.1126/science.1090599. PubMed DOI
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell. Physiol. 2019;234:5451–5465. doi: 10.1002/jcp.27486. PubMed DOI
Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the Answers in Sight? Nat. Rev. Genet. 2008;9:102–114. doi: 10.1038/nrg2290. PubMed DOI
Dueck A., Ziegler C., Eichner A., Berezikov E., Meister G. MicroRNAs Associated with the Different Human Argonaute Proteins. Nucleic Acids Res. 2012;40:9850–9862. doi: 10.1093/nar/gks705. PubMed DOI PMC
Pasquinelli A.E. MicroRNAs and Their Targets: Recognition, Regulation and an Emerging Reciprocal Relationship. Nat. Rev. Genet. 2012;13:271–282. doi: 10.1038/nrg3162. PubMed DOI
Kalla R., Ventham N.T., Kennedy N.A., Quintana J.F., Nimmo E.R., Buck A.H., Satsangi J. MicroRNAs: New Players in IBD. Gut. 2015;64:504–513. doi: 10.1136/gutjnl-2014-307891. PubMed DOI PMC
Zealy R.W., Wrenn S.P., Davila S., Min K.-W., Yoon J.-H. MicroRNA-Binding Proteins: Specificity and Function. WIREs RNA. 2017;8:e1414. doi: 10.1002/wrna.1414. PubMed DOI
Lewis B.P., Shih I.-H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115:787–798. doi: 10.1016/S0092-8674(03)01018-3. PubMed DOI
Bartel D.P. MicroRNA Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Broughton J.P., Lovci M.T., Huang J.L., Yeo G.W., Pasquinelli A.E. Pairing Beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC
Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC
Kudla G., Granneman S., Hahn D., Beggs J.D., Tollervey D. Cross-Linking, Ligation, and Sequencing of Hybrids Reveals RNA–RNA Interactions in Yeast. Proc. Natl. Acad. Sci. USA. 2011;108:10010–10015. doi: 10.1073/pnas.1017386108. PubMed DOI PMC
Helwak A., Kudla G., Dudnakova T., Tollervey D. Mapping the Human MiRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell. 2013;153:654–665. doi: 10.1016/j.cell.2013.03.043. PubMed DOI PMC
John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. Human MicroRNA Targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363. PubMed DOI PMC
Enright A.J., John B., Gaul U., Tuschl T., Sander C., Marks D.S. MicroRNA Targets in Drosophila. Genome Biol. 2004;5:R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC
Kertesz M., Iovino N., Unnerstall U., Gaul U., Segal E. The Role of Site Accessibility in MicroRNA Target Recognition. Nat. Genet. 2007;39:1278–1284. doi: 10.1038/ng2135. PubMed DOI
Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. The Impact of MicroRNAs on Protein Output. Nature. 2008;455:64–71. doi: 10.1038/nature07242. PubMed DOI PMC
Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread Changes in Protein Synthesis Induced by MicroRNAs. Nature. 2008;455:58–63. doi: 10.1038/nature07228. PubMed DOI
Alexiou P., Maragkakis M., Papadopoulos G.L., Reczko M., Hatzigeorgiou A.G. Lost in Translation: An Assessment and Perspective for Computational MicroRNA Target Identification. Bioinformatics. 2009;25:3049–3055. doi: 10.1093/bioinformatics/btp565. PubMed DOI
Ule J., Jensen K.B., Ruggiu M., Mele A., Ule A., Darnell R.B. CLIP Identifies Nova-Regulated RNA Networks in the Brain. Science. 2003;302:1212–1215. doi: 10.1126/science.1090095. PubMed DOI
Karagkouni D., Paraskevopoulou M.D., Chatzopoulos S., Vlachos I.S., Tastsoglou S., Kanellos I., Papadimitriou D., Kavakiotis I., Maniou S., Skoufos G., et al. DIANA-TarBase v8: A Decade-Long Collection of Experimentally Supported MiRNA–Gene Interactions. Nucleic Acids Res. 2018;46:D239–D245. doi: 10.1093/nar/gkx1141. PubMed DOI PMC
Helwak A., Tollervey D. Mapping the MiRNA Interactome by Cross-Linking Ligation and Sequencing of Hybrids (CLASH) Nat. Protoc. 2014;9:711–728. doi: 10.1038/nprot.2014.043. PubMed DOI PMC
Moore M.J., Scheel T.K.H., Luna J.M., Park C.Y., Fak J.J., Nishiuchi E., Rice C.M., Darnell R.B. MiRNA–Target Chimeras Reveal MiRNA 3′-End Pairing as a Major Determinant of Argonaute Target Specificity. Nat. Commun. 2015;6:8864. doi: 10.1038/ncomms9864. PubMed DOI PMC
Riolo G., Cantara S., Marzocchi C., Ricci C. MiRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020;4:1. doi: 10.3390/mps4010001. PubMed DOI PMC
Peterson S.M., Thompson J.A., Ufkin M.L., Sathyanarayana P., Liaw L., Congdon C.B. Common Features of MicroRNA Target Prediction Tools. Front. Genet. 2014;5:23. doi: 10.3389/fgene.2014.00023. PubMed DOI PMC
Ekimler S., Sahin K. Computational Methods for MicroRNA Target Prediction. Genes. 2014;5:671–683. doi: 10.3390/genes5030671. PubMed DOI PMC
Shaker F., Nikravesh A., Arezumand R., Aghaee-Bakhtiari S.H. Web-based tools for miRNA studies analysis. Comput. Biol. Med. 2020;127:104060. doi: 10.1016/j.compbiomed.2020.104060. PubMed DOI
Betel D., Koppal A., Agius P., Sander C., Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90. doi: 10.1186/gb-2010-11-8-r90. PubMed DOI PMC
Maragkakis M., Reczko M., Simossis V.A., Alexiou P., Papadopoulos G.L., Dalamagas T., Giannopoulos G., Goumas G., Koukis E., Kourtis K., et al. DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009;37:W273–W276. doi: 10.1093/nar/gkp292. PubMed DOI PMC
Reczko M., Maragkakis M., Alexiou P., Grosse I., Hatzigeorgiou A.G. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771–776. doi: 10.1093/bioinformatics/bts043. PubMed DOI
Paraskevopoulou M.D., Georgakilas G., Kostoulas N., Vlachos I.S., Vergoulis T., Reczko M., Filippidis C., Dalamagas T., Hatzigeorgiou A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–W173. doi: 10.1093/nar/gkt393. PubMed DOI PMC
Wang X., El Naqa I.M. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008;24:325–332. doi: 10.1093/bioinformatics/btm595. PubMed DOI
Bandyopadhyay S., Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 2009;25:2625–2631. doi: 10.1093/bioinformatics/btp503. PubMed DOI
Liu H., Yue D., Chen Y., Gao S.-J., Huang Y. Improving performance of mammalian microRNA target prediction. BMC Bioinform. 2010;11:476. doi: 10.1186/1471-2105-11-476. PubMed DOI PMC
Eraslan G., Avsec Ž., Gagneur J., Theis F.J. Deep Learning: New Computational Modelling Techniques for Genomics. Nat. Rev. Genet. 2019;20:389–403. doi: 10.1038/s41576-019-0122-6. PubMed DOI
LeCun Y., Bengio Y., Hinton G. Deep Learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI
Min S., Lee B., Yoon S. Deep Learning in Bioinformatics. Brief. Bioinform. 2017;18:851–869. doi: 10.1093/bib/bbw068. PubMed DOI
He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 27–30 June 2016; pp. 770–778. DOI
Travis A.J., Moody J., Helwak A., Tollervey D., Kudla G. Hyb: A Bioinformatics Pipeline for the Analysis of CLASH (Crosslinking, Ligation and Sequencing of Hybrids) Data. Methods. 2014;65:263–273. doi: 10.1016/j.ymeth.2013.10.015. PubMed DOI PMC
Manakov S.A., Shishkin A.A., Yee B.A., Shen K.A., Cox D.C., Park S.S., Foster H.M., Chapman K.B., Yeo G.W., Nostrand E.L.V. Scalable and Deep Profiling of MRNA Targets for Individual MicroRNAs with Chimeric ECLIP. bioRxiv. 2022 doi: 10.1101/2022.02.13.480296. DOI
Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2017;45:D12–D17. doi: 10.1093/nar/gkw1071. PubMed DOI PMC
Cunningham F., Allen J.E., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Austine-Orimoloye O., Azov A.G., Barnes I., Bennett R., et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC
Haeussler M., Zweig A.S., Tyner C., Speir M.L., Rosenbloom K.R., Raney B.J., Lee C.M., Lee B.T., Hinrichs A.S., Gonzalez J.N., et al. The UCSC Genome Browser Database: 2019 Update. Nucleic Acids Res. 2019;47:D853–D858. doi: 10.1093/nar/gky1095. PubMed DOI PMC
Ji Y., Zhou Z., Liu H., Davuluri R.V. DNABERT: Pre-Trained Bidirectional Encoder Representations from Transformers Model for DNA-Language in Genome. Bioinformatics. 2021;37:2112–2120. doi: 10.1093/bioinformatics/btab083. PubMed DOI PMC
Georgakilas G.K., Grioni A., Liakos K.G., Chalupova E., Plessas F.C., Alexiou P. Multi-Branch Convolutional Neural Network for Identification of Small Non-Coding RNA Genomic Loci. Sci. Rep. 2020;10:9486. doi: 10.1038/s41598-020-66454-3. PubMed DOI PMC
Guo H., Viktor H.L. Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach. SIGKDD Explor. Newsl. 2004;6:30–39. doi: 10.1145/1007730.1007736. DOI
Smith M.R., Martinez T., Giraud-Carrier C. An Instance Level Analysis of Data Complexity. Mach Learn. 2014;95:225–256. doi: 10.1007/s10994-013-5422-z. DOI
Krüger J., Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34:W451–W454. doi: 10.1093/nar/gkl243. PubMed DOI PMC
Bernhart S.H., Tafer H., Mückstein U., Flamm C., Stadler P.F., Hofacker I.L. Partition Function and Base Pairing Probabilities of RNA Heterodimers. Algorithms Mol. Biol. 2006;1:3. doi: 10.1186/1748-7188-1-3. PubMed DOI PMC
Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC
Saito T., Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE. 2015;10:e0118432. doi: 10.1371/journal.pone.0118432. PubMed DOI PMC
Miranda K.C., Huynh T., Tay Y., Ang Y.-S., Tam W.-L., Thomson A.M., Lim B., Rigoutsos I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell. 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031. PubMed DOI