Isolation and assessment of antibiotic resistance of Staphylococcus aureus in the air of an underground hard coal mines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40185795
PubMed Central
PMC11971371
DOI
10.1038/s41598-025-94630-w
PII: 10.1038/s41598-025-94630-w
Knihovny.cz E-zdroje
- Klíčová slova
- Bioaerosol, Drug sensitivity, Mining excavations, Respirable dust, Staphylococci,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus izolace a purifikace účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiologie vzduchu * MeSH
- mnohočetná bakteriální léková rezistence MeSH
- Staphylococcus aureus * účinky léků izolace a purifikace MeSH
- těžba uhlí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- antibakteriální látky * MeSH
Mine aerosol poses a serious health threat due to its easy access to the human respiratory tract. Damage may be caused by the chemical composition of dust and the substances adsorbed on its surface, including microorganisms that potentially affect human health. Our proposed research aimed to isolate Staphylococcus aureus strains from coal mine bioaerosol and to assess its sensitivity towards selected antibiotics. Bioaerosol samples were collected in three underground hard coal mines located in Upper Silesia in southern Poland. Microbiological tests of the air samples were carried out according to standard microbiological techniques. All tested strains of Staphylococcus aureus were sensitive to oxacillin, which indicated the lack of methicillin-resistant isolates (MRSA) in the tested group. However, antibiotic resistance from macrolide and lincosamide groups was observed among certain strains. 10% of isolates were constitutive MLSB resistance, while 4% of strains were inductive MLSB resistance. Less than 1% of isolates were erythromycin-resistant and clindamycin-sensitive (MSB). Based on the Chi-square test, statistically significant differences were found in the frequency of MSB, MLSB inductive, and MLSB constitutive phenotypes. Almost 30% of the identified strains showed multi-antibiotic resistance. However, the Chi-square test did not reveal any statistically significant differences in the frequency of multidrug-resistant strains in the considered research areas. The analyses carried out constituted the first study related to the isolation and assessment of drug susceptibility of Staphylococcus aureus in the bioaerosol of hard coal mines. Identification of bioaerosol in underground coal mines is a key issue because, due to the presence of pathogens, it plays a significant role in limiting the spread of occupational diseases. For the health of miners, research into microbial communities benefits the promotion of microbiological control of mine air.
Zobrazit více v PubMed
Paśmionka, I. Assessment of microbial contamination of atmospheric air in a selected wastewater treatment plant. Arch. Environ. Prot.45(4), 60–67 (2019).
Paśmionka, I. Evaluation of microbiological quality of atmospheric air in a selected sewage treatment plant in Lesser Poland. Aerobiologia36, 249–260. 10.1007/s10453-020-09627-x (2020).
Xue, S. et al. Pathogenic bacterial communities of dust in a coal mine. Front. Environ. Sci.10, 857744. 10.3389/fenvs.2022.857744 (2022).
Li, S. et al. Research on the evaluation of air quality in underground coal mines based on a generalized contrastive weighted comprehensive scale index method. Atmosphere14(6), 1021. 10.3390/atmos14061021 (2023).
Trechera, P. et al. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. Int. J. Coal Geol.235, 103677. 10.1016/j.coal.2021.103677 (2021).
Xia, N., Hai, W., Song, G. & Tang, M. Identification and monitoring of coal dust pollution in Wucaiwan mining area, Xinjiang (China) using Landsat derived enhanced coal dust index. PLoS ONE17(4), e0266517. 10.1371/journal.pone.0266517 (2022). PubMed PMC
Luo, H., Zhou, W., Jiskani, I. M. & Wang, Z. Analyzing characteristics of particulate matter pollution in open-pit coal mines: Implications for green mining. Energies14(9), 2680. 10.3390/en14092680 (2021).
Zeng, F. & Jiang, Z. Spatial and temporal evolution of mine dust research: Visual knowledge mapping analysis in Web of Science from 2001 to 2021. Environ. Sci. Pollut. Res.30, 62170–62200. 10.1007/s11356-023-26332-7 (2023). PubMed PMC
Cheluszka, P., Paśmionka, I. B., Gospodarek, J. & Vieira, F. M. C. V. The spread of microbiota in the air of an underground hard coal mine - A case study. Build. Environ.242, 110495. 10.1016/j.buildenv.2023.110495 (2023).
Cuny, C., Layer-Nicolaou, F., Werner, G. & Witte, W. A look at staphylococci from the one health perspective. IJMM314, 151604. 10.1016/j.ijmm.2024.151604 (2024). PubMed
Mata, T. M. et al. Indoor air quality in elderly centers: Pollutants emission and health effects. Environments9(7), 86. 10.3390/environments9070086 (2022).
Yan, X. et al. Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels. Environ. Int.161, 107127. 10.1016/j.envint.2022.107127 (2022). PubMed
Zhou, Z. et al. Association between particulate matter (PM)2·5 air pollution and clinical antibiotic resistance: A global analysis. Lancet Planet Health7(8), e649–e659. 10.1016/S2542-5196(23)00135-3 (2023). PubMed
Mutuku, C., Gazdag, Z. & Melegh, S. Occurrence of antibiotics and bacterial resistance genes in wastewater: Resistance mechanisms and antimicrobial resistance control approaches. World. J. Microbiol. Biotechnol.38, 152. 10.1007/s11274-022-03334-0 (2022). PubMed PMC
Larsson, D. G. J. & Flach, C. F. Antibiotic resistance in the environment. Nat. Rev. Microbiol.20(5), 257–269. 10.1038/s41579-021-00649-x (2022). PubMed PMC
Ray, S., Das, S. & Suar, M. Molecular Mechanism of Drug Resistance. Drug Resistance in Bacteria, Fungi, Malaria, and Cancer. 47–110. 10.1007/978-3-319-48683-3_3 (2017).
Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev.10.1093/femsre/fux053 (2018). PubMed PMC
Bengtsson-Palme, J. et al. Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs?. Environ. Int.178, 108089. 10.1016/j.envint.2023.108089 (2023). PubMed
Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol.7, 1728. 10.3389/fmicb.2016.01728 (2016). PubMed PMC
Ayaaba, E., Li, Y., Yuan, J. & Ni, C. Occupational respiratory diseases of miners from two gold mines in Ghana. IJERPH14(3), 337. 10.3390/ijerph14030337 (2017). PubMed PMC
Donoghue, A. M. Occupational health hazards in mining: An overview. Occup. Med.54, 283–289. 10.1093/occmed/kqh072 (2004). PubMed
Hall, N. B., Blackley, D. J., Halldin, C. N. & Laney, A. S. Current review of pneumoconiosis among US coal miners. Curr. Environ. Health Rep.6(3), 137–147. 10.1007/s40572-019-00237-5 (2019). PubMed PMC
Vanka, K. S. et al. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. ERR31, 210250. 10.1183/16000617.0250-2021 (2022). PubMed PMC
Stewart, A. G. Mining is bad for health: a voyage of discovery. Environ. Geochem. Health42(4), 1153–1165. 10.1007/s10653-019-00367-7 (2020). PubMed PMC
Naghadehi, M. Z., Sereshki, F. & Mohammadi, F. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history. Atmos. Environ.83, 1–5. 10.1016/j.atmosenv.2013.10.053 (2014).
Perret, J. L. et al. Respiratory surveillance for coal mine dust and artificial stone exposed workers in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand*. Respirology25(11), 1193–1202. 10.1111/resp.13952 (2020). PubMed PMC
Yang, L., Birhane, G. E., Zhu, J. & Geng, J. Mining employees safety and the application of information technology in coal mining: Review. Front. Public Health9, 709987. 10.3389/fpubh.2021.709987 (2021). PubMed PMC
Zhou, L.-j, Cao, Q.-g, Yu, K., Wang, L.-l & Wang, H.-b. Research on occupational safety, health management and risk control technology in coal mines. IJERPH15(5), 868. 10.3390/ijerph15050868 (2018). PubMed PMC
Brdová, D., Ruml, T. & Viktorová, J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updates77, 101147. 10.1016/j.drup.2024.101147 (2024). PubMed
Masters, E. A. et al. Evolving concepts in bone infection: Redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res.7, 20. 10.1038/s41413-019-0061-z (2019). PubMed PMC
Yamazaki, Y. et al. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm. Regener.44, 9. 10.1186/s41232-024-00323-8 (2024). PubMed PMC
Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence12(1), 547–569. 10.1080/21505594.2021.1878688 (2021). PubMed PMC
Gehrke, A.-K.E., Giai, C. & Gómez, M. I. Staphylococcus aureus adaptation to the skin in health and persistent/recurrent infections. Antibiotics12, 1520. 10.3390/antibiotics12101520 (2023). PubMed PMC
Ahmad-Mansour, N. et al. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins13, 677. 10.3390/toxins13100677 (2021). PubMed PMC
Song, M. et al. Staphylococcus aureus and biofilms: Transmission, threats, and promising strategies in animal husbandry. J. Anim. Sci. Biotechnol.15, 44. 10.1186/s40104-024-01007-6 (2024). PubMed PMC
Liu, Z.-H., Qi-Ying, Wu., Feng, Xu., Zhang, X. & Liao, X.-B. Biofunction and clinical potential of extracellular vesicles from methicillin-resistant Staphylococcus aureus. Microbiol. Res.266, 127238. 10.1016/j.micres.2022.127238 (2023). PubMed
Qiu, Y. et al. Five major two components systems of Staphylococcus aureus for adaptation in diverse hostile environment. Microb. Pathog.159, 105119. 10.1016/j.micpath.2021.105119 (2021). PubMed
Hardy, B. L. et al. Antimicrobial activity of clinically isolated bacterial species against Staphylococcus aureus. Front. Microbiol.10, 2977. 10.3389/fmicb.2019.02977 (2020). PubMed PMC
Girma, A. Staphylococcus aureus: Current perspectives on molecular pathogenesis and virulence. Cell Surf.13, 100137. 10.1016/j.tcsw.2024.100137 (2025). PubMed PMC
Nikolic, P. & Mudgil, P. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms11, 259. 10.3390/microorganisms11020259 (2023). PubMed PMC
Arunachalam, K., Pandurangan, P., Shi, C. & Lagoa, R. Regulation of Staphylococcusaureus virulence and application of nanotherapeutics to eradicate S. aureus infection. Pharmaceutics15, 310. 10.3390/pharmaceutics15020310 (2023). PubMed PMC
Venkataraman, R. & Yadav, U. Ravi Kurikempannadoddi Shivalingegowda, Yogendra Shrestha, Vaccination strategies to combat nosocomial infections. Vacunas (English Edition)24(1), 60–67. 10.1016/j.vacune.2023.02.005 (2023).
Watkins, K. E. & Unnikrishnan, M. Chapter Three - Evasion of host defenses by intracellular Staphylococcus aureus. In Advances in Applied Microbiology (eds Gadd, G. M. & Sariaslani, S.) 105–141 (Academic Press, 2020). PubMed
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, 2024. http://www.eucast.org (Access date: 03 February 2024)
Goodman, L. A. & Kruskal, W. H. Measures of association for cross classifications. J. Am. Stat. Assoc.49(268), 732–764 (1954).
Chen, X., Kumari, D. & Achal, V. A review on airborne microbes: The characteristics of sources, pathogenicity and geography. Atmosphere11(9), 919. 10.3390/atmos11090919 (2020).
Rdzanek, M., Pusz, W., Gębarowska, E. & Pląskowska, E. Airborne bacteria and fungi in a coal mine in Poland. J. Cave Karst Stud.77(3), 177–182. 10.4311/2015MB0102 (2015).
Dutt, Y. et al. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics11(7), 930. 10.3390/antibiotics11070930 (2022). PubMed PMC
Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control.8, 76. 10.1186/s13756-019-0533-3 (2019). PubMed PMC
Sharma, S. et al. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms11(6), 1614. 10.3390/microorganisms11061614 (2023). PubMed PMC
Zhao, A., Sun, J. & Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol.13, 1137947. 10.3389/fcimb.2023.1137947 (2023). PubMed PMC
Gandara, A. et al. Isolation of Staphylococcus aureus and antibiotic-resistant Staphylococcus aureus from residential indoor bioaerosols. Environ. Health Perspect.114(12), 1859–1864. 10.1289/ehp.9585 (2006). PubMed PMC
Zhou, F. & Wang, Y. Characteristics of antibiotic resistance of airborne staphylococcus isolated from metro stations. IJERPH10(6), 2412–2426. 10.3390/ijerph10062412 (2013). PubMed PMC
Linz, M. S., Mattappallil, A., Finkel, D. & Parker, D. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics12(3), 557. 10.3390/antibiotics12030557 (2023). PubMed PMC
Monistero, V. et al. Different distribution of antimicrobial resistance genes and virulence profiles of Staphylococcus aureus strains isolated from clinical mastitis in six countries. JDS103(4), 3431–3446. 10.3168/jds.2019-17141 (2020). PubMed
Yang, F. et al. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front. Microbiol.14, 1190790. 10.3389/fmicb.2023.1190790 (2023). PubMed PMC
Kmiha, S. et al. Methicillin-resistant Staphylococcus aureus Strains Isolated from burned patients in a Tunisian Hospital: Molecular typing, virulence genes, and antimicrobial resistance. Antibiotics12(6), 1030. 10.3390/antibiotics12061030 (2023). PubMed PMC
Wang, Y. et al. Rapid and ultrasensitive detection of methicillin-resistant Staphylococcus aureus based on CRISPR-Cas12a combined with recombinase-aided amplification. Front. Microbiol.13, 903298. 10.3389/fmicb.2022.903298 (2022). PubMed PMC
El Mammery, A. et al. An increase in erythromycin resistance in methicillin-susceptible Staphylococcus aureus from blood correlates with the use of macrolide/lincosamide/streptogramin antibiotics (2004–2020). EARS-Net Spain. Front. Microbiol.14, 1220286. 10.3389/fmicb.2023.1220286 (2023). PubMed PMC
Miklasińska-Majdanik, M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics10(11), 1406. 10.3390/antibiotics10111406 (2021). PubMed PMC
Stefańska, I., Kwiecień, E., Kizerwetter-Świda, M., Chrobak-Chmiel, D. & Rzewuska, M. Tetracycline, macrolide and lincosamide resistance in Streptococcus canis strains from companion animals and its genetic determinants. Antibiotics11(8), 1034. 10.3390/antibiotics11081034 (2022). PubMed PMC
Urban-Chmiel, R. et al. Antibiotic resistance in bacteria - a review. Antibiotics11(8), 1079. 10.3390/antibiotics11081079 (2022). PubMed PMC
Can-Güven, E. The current status and future needs of global bioaerosol research: A bibliometric analysis. Int. J. Environ. Sci. Technol.19, 7857–7868. 10.1007/s13762-021-03683-7 (2022). PubMed PMC
Jabeen, R., Kizhisseri, M. I. & Mayanaik, S. N. Bioaerosol assessment in indoor and outdoor environments: A case study from India. Sci. Rep.13, 18066. 10.1038/s41598-023-44315-z (2023). PubMed PMC
Sajjad, B., Hussain, S., Rasool, K., Hassan, M. & Almomani, F. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. Environ. Pollut.336, 122473. 10.1016/j.envpol.2023.122473 (2023). PubMed