Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate

. 2024 Jun 11 ; 15 (1) : 4961. [epub] 20240611

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38862514
Odkazy

PubMed 38862514
PubMed Central PMC11167012
DOI 10.1038/s41467-024-48493-w
PII: 10.1038/s41467-024-48493-w
Knihovny.cz E-zdroje

Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.

Zobrazit více v PubMed

Šmejkal L, MacDonald AH, Sinova J, Nakatsuji S, Jungwirth T. Anomalous hall antiferromagnets. Nat. Rev. Mater. 2022;7:482–496. doi: 10.1038/s41578-022-00430-3. DOI

Nakatsuji, S. & Arita, R. Topological magnets: functions based on berry phase and multipoles. Annu. Rev. Condens. Matter Phys.13 (2022).

Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI

Wu C, Sun K, Fradkin E, Zhang S-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B. 2007;75:115103. doi: 10.1103/PhysRevB.75.115103. DOI

Schofield A. There and back again: from magnets to superconductors. Physics. 2009;2:93. doi: 10.1103/Physics.2.93. DOI

Classen L, Chubukov AV, Honerkamp C, Scherer MM. Competing orders at higher-order van Hove points. Phys. Rev. B. 2020;102:125141. doi: 10.1103/PhysRevB.102.125141. DOI

Borzi RA, et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science. 2007;315:214–218. doi: 10.1126/science.1134796. PubMed DOI

Chen H, Niu Q, Macdonald AH. Anomalous hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI

Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. Crystal time-reversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets. Sci. Adv. 2020;6:eaaz8809. doi: 10.1126/sciadv.aaz8809. PubMed DOI PMC

Ghimire NJ, et al. Large anomalous hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 2018;9:3280. doi: 10.1038/s41467-018-05756-7. PubMed DOI PMC

Nakatsuji S, Kiyohara N, Higo T. Large anomalous hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI

Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T. Time-reversal symmetry breaking and spontaneous hall effect without magnetic dipole order. Nature. 2010;463:210–213. doi: 10.1038/nature08680. PubMed DOI

Šmejkal L, Sinova J, Jungwirth T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X. 2022;12:031042.

Šmejkal L, Sinova J, Jungwirth T. Emerging research landscape of altermagnetism. Phys. Rev. X. 2022;12:040501.

Mazin II, Koepernik K, Johannes MD, González-Hernández R, Šmejkal L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 2021;118:e2108924118. doi: 10.1073/pnas.2108924118. PubMed DOI PMC

Šmejkal L, et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 2023;131:256703. doi: 10.1103/PhysRevLett.131.256703. PubMed DOI

Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. 2, 1–11. Preprint at https://arxiv.org/abs/2309.02355 (2023).

Feng Z, et al. An anomalous hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022;5:735–743. doi: 10.1038/s41928-022-00866-z. DOI

Krempaský J, et al. Altermagnetic lifting of Kramers spin degeneracy. Nature. 2024;626:517–522. doi: 10.1038/s41586-023-06907-7. PubMed DOI PMC

Fedchenko O, et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024;10:31. doi: 10.1126/sciadv.adj4883. PubMed DOI PMC

Lee S, et al. Broken kramers degeneracy in altermagnetic mnte. Phys. Rev. Lett. 2024;132:036702. doi: 10.1103/PhysRevLett.132.036702. PubMed DOI

Reimers S, et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 2024;15:1–7. doi: 10.1038/s41467-024-46476-5. PubMed DOI PMC

Ahn K-H, Hariki A, Lee K-W, Kuneš J. Antiferromagnetism in ruo2 as d-wave pomeranchuk instability. Phys. Rev. B. 2019;99:184432. doi: 10.1103/PhysRevB.99.184432. DOI

Šmejkal L, Hellenes AB, González-Hernández R, Sinova J, Jungwirth T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X. 2022;12:011028.

González-Hernández R, et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 2021;126:127701. doi: 10.1103/PhysRevLett.126.127701. PubMed DOI

Bose A, et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 2022;5:267–274. doi: 10.1038/s41928-022-00744-8. DOI

Bai H, et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 2022;128:197202. doi: 10.1103/PhysRevLett.128.197202. PubMed DOI

Karube S, et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 2022;129:137201. doi: 10.1103/PhysRevLett.129.137201. PubMed DOI

Shao D-F, Zhang S-H, Li M, Eom C-B, Tsymbal EY. Spin-neutral currents for spintronics. Nat. Commun. 2021;12:7061. doi: 10.1038/s41467-021-26915-3. PubMed DOI PMC

Gottschilch M, et al. Study of the antiferromagnetism of Mn5Si3: an inverse magnetocaloric effect material. J. Mater. Chem. 2012;22:15275. doi: 10.1039/c2jm00154c. DOI

Sürgers C, Fischer G, Winkel P, Löhneysen HV. Large topological hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 2014;5:3400. doi: 10.1038/ncomms4400. PubMed DOI

Biniskos, N.et al. An overview of the spin dynamics of antiferromagnetic Mn5Si3. APL Mater.11 (2023).

Biniskos N, et al. Spin fluctuations drive the inverse magnetocaloric effect in Mn5Si3. Phys. Rev. Lett. 2018;120:257205. doi: 10.1103/PhysRevLett.120.257205. PubMed DOI

Sürgers C, Kittler W, Wolf T, Löhneysen HV. Anomalous hall effect in the noncollinear antiferromagnet mn5si3. AIP Adv. 2016;6:055604. doi: 10.1063/1.4943759. DOI

Lander, G. H., Brown, P. J. & Forsytht, J. B. The antiferromagnetic structure of Mn5Si3. https://iopscience.iop.org/article/10.1088/0370-1328/91/2/310/pdf. DOI

Brownt, P. J., Forsythl, J. B., Nunezt, V. & lhssett lnslilut hue Langevin, F. The low-temperature antiferromagnetic structure of mn,si3 revised in the light of neutron polarimetry*. https://iopscience.iop.org/article/10.1088/0953-8984/4/49/029/pdf (1992). DOI

Brown, P. J. & Forsyth, J. B. J. Phys.: Condens. Matter. https://iopscience.iop.org/article/10.1088/0953-8984/7/39/004/pdf (1995). DOI

Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N, Tokura Y. Spin chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet. Science. 2001;291:2573–2576. doi: 10.1126/science.1058161. PubMed DOI

Neubauer A, et al. Topological hall effect in the phase of MnSi. Phys. Rev. Lett. 2009;102:186602. doi: 10.1103/PhysRevLett.102.186602. PubMed DOI

Sürgers C, et al. Switching of a large anomalous hall effect between metamagnetic phases of a non-collinear antiferromagnet. Sci. Rep. 2017;7:42982. doi: 10.1038/srep42982. PubMed DOI PMC

Bazhan AN, Bazan C. Weak ferromagnetism in CoF2 and NiF2. Sov. Phys.—JETP. 1976;42:898–904.

Šmejkal L, Železný J, Sinova J, Jungwirth T. Electric control of dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI

Jungwirth T, Niu Q, MacDonald AH. Anomalous hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 2002;88:4. doi: 10.1103/PhysRevLett.88.207208. PubMed DOI

Betancourt RDG, et al. Spontaneous anomalous hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 2023;130:036702. doi: 10.1103/PhysRevLett.130.036702. PubMed DOI

Turner AM, Zhang Y, Mong RSK, Vishwanath A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B. 2012;85:165120. doi: 10.1103/PhysRevB.85.165120. DOI

Šmejkal L, Mokrousov Y, Yan B, MacDonald AH. Topological antiferromagnetic spintronics. Nat. Phys. 2018;14:242–251. doi: 10.1038/s41567-018-0064-5. DOI

Ishizaka, A & Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).

Olive-Mendez S, et al. Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection. Thin Solid Films. 2008;517:191–196. doi: 10.1016/j.tsf.2008.08.090. DOI

Kounta I, et al. Competitive actions of MnSi in the epitaxial growth of mn5si3 thin films on Si(111) Phys. Rev. Mater. 2023;7:024416. doi: 10.1103/PhysRevMaterials.7.024416. DOI

Choi W-Y, Bang H-W, Chun S-H, Lee S, Jung M-H. Skyrmion phase in mnsi thin films grown on sapphire by a conventional sputtering. Nanoscale Res. Lett. 2021;16:7. doi: 10.1186/s11671-020-03462-2. PubMed DOI PMC

Kriegner D, Matěj Z, Kužel R, Holý V, IUCr. Powder diffraction in bragg-brentano geometry with straight linear detectors. J. Appl. Crystallogr. 2015;48:613–618. doi: 10.1107/S1600576715003465. PubMed DOI PMC

Seemann M, Ködderitzsch D, Wimmer S, Ebert H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B. 2015;92:155138. doi: 10.1103/PhysRevB.92.155138. DOI

Badura, A.et al. Even-in-magnetic-field part of transverse resistivity as a probe of magnetic order. Preprint at http://arxiv.org/abs/2311.14498 (2023).

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B. 1994;49:16223–16233. doi: 10.1103/PhysRevB.49.16223. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Mostofi AA. Wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 2008;178:685–699. doi: 10.1016/j.cpc.2007.11.016. DOI

Wu QS, Zhang SN, Song H-FF, Troyer M, Soluyanov AA. Wanniertools: an open-source software package for novel topological materials. Comput. Phys. Commun. 2017;224:405–416. doi: 10.1016/j.cpc.2017.09.033. DOI

Haynes, W. CRC Handbook of Chemistry and Physics (CRC Press, 2017).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanoscale imaging and control of altermagnetism in MnTe

. 2024 Dec ; 636 (8042) : 348-353. [epub] 20241211

Anisotropic magnetoresistance in altermagnetic MnTe

. 2024 ; 2 (1) : 45. [epub] 20240813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...