Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38862514
PubMed Central
PMC11167012
DOI
10.1038/s41467-024-48493-w
PII: 10.1038/s41467-024-48493-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.
Aix Marseille Univ CNRS CINAM AMUTECH Marseille France
Aix Marseille Univ CNRS IM2NP UMR 7334 Marseille France
Department of Physics Texas A and M University College Station Texas USA
Institut für Physik Johannes Gutenberg Universität Mainz 55128 Mainz Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Leibniz Institute for Solid State and Materials Research Helmholtzstr 20 01069 Dresden Germany
School of Physics and Astronomy University of Nottingham NG7 2RD Nottingham UK
Univ Grenoble Alpes CNRS CEA Grenoble INP Spintec F 38000 Grenoble France
Universität Konstanz Fachbereich Physik 78457 Konstanz Germany
Zobrazit více v PubMed
Šmejkal L, MacDonald AH, Sinova J, Nakatsuji S, Jungwirth T. Anomalous hall antiferromagnets. Nat. Rev. Mater. 2022;7:482–496. doi: 10.1038/s41578-022-00430-3. DOI
Nakatsuji, S. & Arita, R. Topological magnets: functions based on berry phase and multipoles. Annu. Rev. Condens. Matter Phys.13 (2022).
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI
Wu C, Sun K, Fradkin E, Zhang S-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B. 2007;75:115103. doi: 10.1103/PhysRevB.75.115103. DOI
Schofield A. There and back again: from magnets to superconductors. Physics. 2009;2:93. doi: 10.1103/Physics.2.93. DOI
Classen L, Chubukov AV, Honerkamp C, Scherer MM. Competing orders at higher-order van Hove points. Phys. Rev. B. 2020;102:125141. doi: 10.1103/PhysRevB.102.125141. DOI
Borzi RA, et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science. 2007;315:214–218. doi: 10.1126/science.1134796. PubMed DOI
Chen H, Niu Q, Macdonald AH. Anomalous hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI
Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. Crystal time-reversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets. Sci. Adv. 2020;6:eaaz8809. doi: 10.1126/sciadv.aaz8809. PubMed DOI PMC
Ghimire NJ, et al. Large anomalous hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 2018;9:3280. doi: 10.1038/s41467-018-05756-7. PubMed DOI PMC
Nakatsuji S, Kiyohara N, Higo T. Large anomalous hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI
Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T. Time-reversal symmetry breaking and spontaneous hall effect without magnetic dipole order. Nature. 2010;463:210–213. doi: 10.1038/nature08680. PubMed DOI
Šmejkal L, Sinova J, Jungwirth T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X. 2022;12:031042.
Šmejkal L, Sinova J, Jungwirth T. Emerging research landscape of altermagnetism. Phys. Rev. X. 2022;12:040501.
Mazin II, Koepernik K, Johannes MD, González-Hernández R, Šmejkal L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 2021;118:e2108924118. doi: 10.1073/pnas.2108924118. PubMed DOI PMC
Šmejkal L, et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 2023;131:256703. doi: 10.1103/PhysRevLett.131.256703. PubMed DOI
Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. 2, 1–11. Preprint at https://arxiv.org/abs/2309.02355 (2023).
Feng Z, et al. An anomalous hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022;5:735–743. doi: 10.1038/s41928-022-00866-z. DOI
Krempaský J, et al. Altermagnetic lifting of Kramers spin degeneracy. Nature. 2024;626:517–522. doi: 10.1038/s41586-023-06907-7. PubMed DOI PMC
Fedchenko O, et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024;10:31. doi: 10.1126/sciadv.adj4883. PubMed DOI PMC
Lee S, et al. Broken kramers degeneracy in altermagnetic mnte. Phys. Rev. Lett. 2024;132:036702. doi: 10.1103/PhysRevLett.132.036702. PubMed DOI
Reimers S, et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 2024;15:1–7. doi: 10.1038/s41467-024-46476-5. PubMed DOI PMC
Ahn K-H, Hariki A, Lee K-W, Kuneš J. Antiferromagnetism in ruo2 as d-wave pomeranchuk instability. Phys. Rev. B. 2019;99:184432. doi: 10.1103/PhysRevB.99.184432. DOI
Šmejkal L, Hellenes AB, González-Hernández R, Sinova J, Jungwirth T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X. 2022;12:011028.
González-Hernández R, et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 2021;126:127701. doi: 10.1103/PhysRevLett.126.127701. PubMed DOI
Bose A, et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 2022;5:267–274. doi: 10.1038/s41928-022-00744-8. DOI
Bai H, et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 2022;128:197202. doi: 10.1103/PhysRevLett.128.197202. PubMed DOI
Karube S, et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 2022;129:137201. doi: 10.1103/PhysRevLett.129.137201. PubMed DOI
Shao D-F, Zhang S-H, Li M, Eom C-B, Tsymbal EY. Spin-neutral currents for spintronics. Nat. Commun. 2021;12:7061. doi: 10.1038/s41467-021-26915-3. PubMed DOI PMC
Gottschilch M, et al. Study of the antiferromagnetism of Mn5Si3: an inverse magnetocaloric effect material. J. Mater. Chem. 2012;22:15275. doi: 10.1039/c2jm00154c. DOI
Sürgers C, Fischer G, Winkel P, Löhneysen HV. Large topological hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 2014;5:3400. doi: 10.1038/ncomms4400. PubMed DOI
Biniskos, N.et al. An overview of the spin dynamics of antiferromagnetic Mn5Si3. APL Mater.11 (2023).
Biniskos N, et al. Spin fluctuations drive the inverse magnetocaloric effect in Mn5Si3. Phys. Rev. Lett. 2018;120:257205. doi: 10.1103/PhysRevLett.120.257205. PubMed DOI
Sürgers C, Kittler W, Wolf T, Löhneysen HV. Anomalous hall effect in the noncollinear antiferromagnet mn5si3. AIP Adv. 2016;6:055604. doi: 10.1063/1.4943759. DOI
Lander, G. H., Brown, P. J. & Forsytht, J. B. The antiferromagnetic structure of Mn5Si3. https://iopscience.iop.org/article/10.1088/0370-1328/91/2/310/pdf. DOI
Brownt, P. J., Forsythl, J. B., Nunezt, V. & lhssett lnslilut hue Langevin, F. The low-temperature antiferromagnetic structure of mn,si3 revised in the light of neutron polarimetry*. https://iopscience.iop.org/article/10.1088/0953-8984/4/49/029/pdf (1992). DOI
Brown, P. J. & Forsyth, J. B. J. Phys.: Condens. Matter. https://iopscience.iop.org/article/10.1088/0953-8984/7/39/004/pdf (1995). DOI
Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N, Tokura Y. Spin chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet. Science. 2001;291:2573–2576. doi: 10.1126/science.1058161. PubMed DOI
Neubauer A, et al. Topological hall effect in the phase of MnSi. Phys. Rev. Lett. 2009;102:186602. doi: 10.1103/PhysRevLett.102.186602. PubMed DOI
Sürgers C, et al. Switching of a large anomalous hall effect between metamagnetic phases of a non-collinear antiferromagnet. Sci. Rep. 2017;7:42982. doi: 10.1038/srep42982. PubMed DOI PMC
Bazhan AN, Bazan C. Weak ferromagnetism in CoF2 and NiF2. Sov. Phys.—JETP. 1976;42:898–904.
Šmejkal L, Železný J, Sinova J, Jungwirth T. Electric control of dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI
Jungwirth T, Niu Q, MacDonald AH. Anomalous hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 2002;88:4. doi: 10.1103/PhysRevLett.88.207208. PubMed DOI
Betancourt RDG, et al. Spontaneous anomalous hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 2023;130:036702. doi: 10.1103/PhysRevLett.130.036702. PubMed DOI
Turner AM, Zhang Y, Mong RSK, Vishwanath A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B. 2012;85:165120. doi: 10.1103/PhysRevB.85.165120. DOI
Šmejkal L, Mokrousov Y, Yan B, MacDonald AH. Topological antiferromagnetic spintronics. Nat. Phys. 2018;14:242–251. doi: 10.1038/s41567-018-0064-5. DOI
Ishizaka, A & Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).
Olive-Mendez S, et al. Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection. Thin Solid Films. 2008;517:191–196. doi: 10.1016/j.tsf.2008.08.090. DOI
Kounta I, et al. Competitive actions of MnSi in the epitaxial growth of mn5si3 thin films on Si(111) Phys. Rev. Mater. 2023;7:024416. doi: 10.1103/PhysRevMaterials.7.024416. DOI
Choi W-Y, Bang H-W, Chun S-H, Lee S, Jung M-H. Skyrmion phase in mnsi thin films grown on sapphire by a conventional sputtering. Nanoscale Res. Lett. 2021;16:7. doi: 10.1186/s11671-020-03462-2. PubMed DOI PMC
Kriegner D, Matěj Z, Kužel R, Holý V, IUCr. Powder diffraction in bragg-brentano geometry with straight linear detectors. J. Appl. Crystallogr. 2015;48:613–618. doi: 10.1107/S1600576715003465. PubMed DOI PMC
Seemann M, Ködderitzsch D, Wimmer S, Ebert H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B. 2015;92:155138. doi: 10.1103/PhysRevB.92.155138. DOI
Badura, A.et al. Even-in-magnetic-field part of transverse resistivity as a probe of magnetic order. Preprint at http://arxiv.org/abs/2311.14498 (2023).
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B. 1994;49:16223–16233. doi: 10.1103/PhysRevB.49.16223. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Mostofi AA. Wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 2008;178:685–699. doi: 10.1016/j.cpc.2007.11.016. DOI
Wu QS, Zhang SN, Song H-FF, Troyer M, Soluyanov AA. Wanniertools: an open-source software package for novel topological materials. Comput. Phys. Commun. 2017;224:405–416. doi: 10.1016/j.cpc.2017.09.033. DOI
Haynes, W. CRC Handbook of Chemistry and Physics (CRC Press, 2017).