Direct observation of altermagnetic band splitting in CrSb thin films
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TRR 173
Deutsche Forschungsgemeinschaft (German Research Foundation)
TRR 288
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
38459058
PubMed Central
PMC10923844
DOI
10.1038/s41467-024-46476-5
PII: 10.1038/s41467-024-46476-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.
Center for Quantum Science and Engineering George Mason University Fairfax VA 22030 USA
Department of Physics and Astronomy George Mason University Fairfax VA 22030 USA
Department of Physics Texas A and M University College Station TX 77843 4242 USA
Inst of Physics Academy of Sciences of the Czech Republic Cukrovarnická 10 Praha 6 Czech Republic
Institut für Physik Johannes Gutenberg Universität Mainz 55099 Mainz Germany
Zobrazit více v PubMed
Šmejkal L, Sinova J, Jungwirth T. Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry. Phys. Rev. X. 2022;12:031042.
Šmejkal L, Sinova J, Jungwirth T. Emerging Research Landscape of Altermagnetism. Phys. Rev. X. 2022;12:040501.
Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020;6:eaaz8809. doi: 10.1126/sciadv.aaz8809. PubMed DOI PMC
Hayami S, Yanagi Y, Kusunose H. Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering. J. Phys. Soc. Jpn. 2019;88:123702. doi: 10.7566/JPSJ.88.123702. DOI
Mazin II, Koepernik K, Johannes MD, Šmejkal L. Prediction of unconventional magnetism in doped FeSb2. Prod. Natl Acad. Sci. USA. 2021;118:e2108924118. doi: 10.1073/pnas.2108924118. PubMed DOI PMC
Kampfrath T, et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Phot. 2011;5:31. doi: 10.1038/nphoton.2010.259. DOI
Bodnar SY, et al. Magnetoresistance Effects in the Metallic Antiferromagnet Mn2Au. Phys. Rev. Appl. 2020;14:014004. doi: 10.1103/PhysRevApplied.14.014004. DOI
Shao D-F, Zhang SH, Li M, Eom CB, Tsymbal EY. Spin-neutral currents for spintronics. Nat. Commun. 2021;12:7061. doi: 10.1038/s41467-021-26915-3. PubMed DOI PMC
Šmejkal L, Hellenes AB, González-Hernández R, Sinova J, Jungwirth T. Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling. Phys. Rev. X. 2022;12:011028.
Gurung, G., Shao, D.F. & Tsymbal, E.Y. Extraordinary Tunneling Magnetoresistance in Antiferromagnetic Tunnel Junctions with Antiperovskite Electrodes. arXiv https://arxiv.org/abs/2306.03026 (2023).
Šmejkal L, MacDonald AH, Sinova J, Nakatsuji S, Jungwirth T. Anomalous Hall antiferromagnets. Nat. Rev. Mat. 2022;7:482. doi: 10.1038/s41578-022-00430-3. DOI
Chen H, Niu Q, MacDonald AH. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI
Železný J, Zhang Y, Felser C, Yan B. Spin-Polarized Current in Noncollinear Antiferromagnets. Phys. Rev. Lett. 2017;119:187204. doi: 10.1103/PhysRevLett.119.187204. PubMed DOI
Suzuki M-T, Koretsune T, Ochi M, Arita R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B. 2017;95:094406. doi: 10.1103/PhysRevB.95.094406. DOI
Yuan L-Z, Wang Z, Luo J-W, Rashba EI, Zunger A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B. 2020;102:014422. doi: 10.1103/PhysRevB.102.014422. DOI
Gurung G, Shao D-F, Tsymbal EY. Transport spinpolarization of noncollinear antiferromagnetic antiperovskites. Phys. Rev. Mat. 2021;5:124411.
González-Hernández R, et al. Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. Phys. Rev. Lett. 2021;126:127701. doi: 10.1103/PhysRevLett.126.127701. PubMed DOI
Bose A, et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electr. 2022;5:267–274. doi: 10.1038/s41928-022-00744-8. DOI
Bai H, et al. Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO2. Phys. Rev. Lett. 2022;128:197202. doi: 10.1103/PhysRevLett.128.197202. PubMed DOI
Karube S, et al. Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO2. Phys. Rev. Lett. 2022;129:137201. doi: 10.1103/PhysRevLett.129.137201. PubMed DOI
Feng Z, et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electr. 2022;5:735. doi: 10.1038/s41928-022-00866-z. DOI
Reichlová, H. et al. Macroscopic time reversal symmetry breaking arising from antiferromagnetic Zeeman effect. arXiv https://arxiv.org/abs/2012.15651 (2021).
González-Betancourt RD, et al. Spontaneous Anomalous Hall Effect Arising from an Unconventional Compensated Magnetic Phase in a Semiconductor. Phys. Rev. Lett. 2023;130:036702. doi: 10.1103/PhysRevLett.130.036702. PubMed DOI
Fedchenko O, et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024;10:eadj4883. doi: 10.1126/sciadv.adj4883. PubMed DOI PMC
Osumi, T. et al. Observation of Giant Band Splitting in Altermagnetic MnTe. arXivhttps://arxiv.org/pdf/2308.10117.pdf (2023).
Krempaský J, et al. Altermagnetic lifting of Kramers spin degeneracy. Nature. 2024;626:517. doi: 10.1038/s41586-023-06907-7. PubMed DOI PMC
Lee S, et al. Broken Kramers’ Degeneracy in Altermagnetic MnTe. Phys. Rev. Lett. 2024;132:036702. doi: 10.1103/PhysRevLett.132.036702. PubMed DOI
Elmers HJ, et al. Nél Vector Induced Manipulation of Valence States in the Collinear Antiferromagnet Mn2Au. ACS Nano. 2020;20:17554. doi: 10.1021/acsnano.0c08215. PubMed DOI
Takei WJ, Cox DE, Shirane G. Magnetic Structures in the MnSb-CrSb System. Phys. Rev. 1963;129:2008. doi: 10.1103/PhysRev.129.2008. DOI
Snow AI. Neutron Diffraction Invesitgation of the Atomic Moment Orientation in the Antiferromagnetic Compound CrSb. Phys. Rev. 1952;85:365. doi: 10.1103/PhysRev.85.365. DOI
Park IJ, Kwon S, Lake RK. Effects of filling, strain, and electric field on the Néel vector in antiferromagnetic CrSb. Phys. Rev. B. 2020;102:224426. doi: 10.1103/PhysRevB.102.224426. DOI
Moser S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electr. Spec. Rel. Phen. 2017;214:29. doi: 10.1016/j.elspec.2016.11.007. DOI
Gobeli G, Allen FG, Kane EO. Polarization evidence for momentum conservation in photoelectricemission from germanium and silicon. Phys. Rev. Lett. 1963;12:94. doi: 10.1103/PhysRevLett.12.94. DOI
Kjekshus A, Walseth KP. On the Properties of the Cr1+xSb, Fe1+xSb, Co1+xSb, Ni1+xSb, Pd1+xSb, and Pt1+xSb Phases. Acta Chem. Scan. 1969;23:2621. doi: 10.3891/acta.chem.scand.23-2621. DOI
Strocov VN, et al. Three-Dimensional Electron Realm in VSe2 by Soft-X-Ray Photoelectron Spectroscopy: Origin of Charge-Density Waves. Phys. Rev. Lett. 2012;109:086401. doi: 10.1103/PhysRevLett.109.086401. PubMed DOI
Strocov VN, et al. High-Resolution Soft X-Ray Beamline ADRESS at the Swiss Light Source for Resonant Inelastic X-Ray Scattering and Angle-Resolved Photoelectron Spectroscopies. J. Synchrotron Radiat. 2010;17:631. doi: 10.1107/S0909049510019862. PubMed DOI PMC
Strocov VN, et al. Soft-X-Ray ARPES Facility at the ADRESS Beamline of the SLS: Concepts, Technical Realisation and Scientific Applications. J. Synchrotron Radiat. 2014;21:32. doi: 10.1107/S1600577513019085. PubMed DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272. doi: 10.1107/S0021889811038970. DOI