Direct observation of altermagnetic band splitting in CrSb thin films

. 2024 Mar 08 ; 15 (1) : 2116. [epub] 20240308

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38459058

Grantová podpora
TRR 173 Deutsche Forschungsgemeinschaft (German Research Foundation)
TRR 288 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 38459058
PubMed Central PMC10923844
DOI 10.1038/s41467-024-46476-5
PII: 10.1038/s41467-024-46476-5
Knihovny.cz E-zdroje

Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.

Zobrazit více v PubMed

Šmejkal L, Sinova J, Jungwirth T. Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry. Phys. Rev. X. 2022;12:031042.

Šmejkal L, Sinova J, Jungwirth T. Emerging Research Landscape of Altermagnetism. Phys. Rev. X. 2022;12:040501.

Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020;6:eaaz8809. doi: 10.1126/sciadv.aaz8809. PubMed DOI PMC

Hayami S, Yanagi Y, Kusunose H. Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering. J. Phys. Soc. Jpn. 2019;88:123702. doi: 10.7566/JPSJ.88.123702. DOI

Mazin II, Koepernik K, Johannes MD, Šmejkal L. Prediction of unconventional magnetism in doped FeSb2. Prod. Natl Acad. Sci. USA. 2021;118:e2108924118. doi: 10.1073/pnas.2108924118. PubMed DOI PMC

Kampfrath T, et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Phot. 2011;5:31. doi: 10.1038/nphoton.2010.259. DOI

Bodnar SY, et al. Magnetoresistance Effects in the Metallic Antiferromagnet Mn2Au. Phys. Rev. Appl. 2020;14:014004. doi: 10.1103/PhysRevApplied.14.014004. DOI

Shao D-F, Zhang SH, Li M, Eom CB, Tsymbal EY. Spin-neutral currents for spintronics. Nat. Commun. 2021;12:7061. doi: 10.1038/s41467-021-26915-3. PubMed DOI PMC

Šmejkal L, Hellenes AB, González-Hernández R, Sinova J, Jungwirth T. Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling. Phys. Rev. X. 2022;12:011028.

Gurung, G., Shao, D.F. & Tsymbal, E.Y. Extraordinary Tunneling Magnetoresistance in Antiferromagnetic Tunnel Junctions with Antiperovskite Electrodes. arXiv https://arxiv.org/abs/2306.03026 (2023).

Šmejkal L, MacDonald AH, Sinova J, Nakatsuji S, Jungwirth T. Anomalous Hall antiferromagnets. Nat. Rev. Mat. 2022;7:482. doi: 10.1038/s41578-022-00430-3. DOI

Chen H, Niu Q, MacDonald AH. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI

Železný J, Zhang Y, Felser C, Yan B. Spin-Polarized Current in Noncollinear Antiferromagnets. Phys. Rev. Lett. 2017;119:187204. doi: 10.1103/PhysRevLett.119.187204. PubMed DOI

Suzuki M-T, Koretsune T, Ochi M, Arita R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B. 2017;95:094406. doi: 10.1103/PhysRevB.95.094406. DOI

Yuan L-Z, Wang Z, Luo J-W, Rashba EI, Zunger A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B. 2020;102:014422. doi: 10.1103/PhysRevB.102.014422. DOI

Gurung G, Shao D-F, Tsymbal EY. Transport spinpolarization of noncollinear antiferromagnetic antiperovskites. Phys. Rev. Mat. 2021;5:124411.

González-Hernández R, et al. Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. Phys. Rev. Lett. 2021;126:127701. doi: 10.1103/PhysRevLett.126.127701. PubMed DOI

Bose A, et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electr. 2022;5:267–274. doi: 10.1038/s41928-022-00744-8. DOI

Bai H, et al. Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO2. Phys. Rev. Lett. 2022;128:197202. doi: 10.1103/PhysRevLett.128.197202. PubMed DOI

Karube S, et al. Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO2. Phys. Rev. Lett. 2022;129:137201. doi: 10.1103/PhysRevLett.129.137201. PubMed DOI

Feng Z, et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electr. 2022;5:735. doi: 10.1038/s41928-022-00866-z. DOI

Reichlová, H. et al. Macroscopic time reversal symmetry breaking arising from antiferromagnetic Zeeman effect. arXiv https://arxiv.org/abs/2012.15651 (2021).

González-Betancourt RD, et al. Spontaneous Anomalous Hall Effect Arising from an Unconventional Compensated Magnetic Phase in a Semiconductor. Phys. Rev. Lett. 2023;130:036702. doi: 10.1103/PhysRevLett.130.036702. PubMed DOI

Fedchenko O, et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024;10:eadj4883. doi: 10.1126/sciadv.adj4883. PubMed DOI PMC

Osumi, T. et al. Observation of Giant Band Splitting in Altermagnetic MnTe. arXivhttps://arxiv.org/pdf/2308.10117.pdf (2023).

Krempaský J, et al. Altermagnetic lifting of Kramers spin degeneracy. Nature. 2024;626:517. doi: 10.1038/s41586-023-06907-7. PubMed DOI PMC

Lee S, et al. Broken Kramers’ Degeneracy in Altermagnetic MnTe. Phys. Rev. Lett. 2024;132:036702. doi: 10.1103/PhysRevLett.132.036702. PubMed DOI

Elmers HJ, et al. Nél Vector Induced Manipulation of Valence States in the Collinear Antiferromagnet Mn2Au. ACS Nano. 2020;20:17554. doi: 10.1021/acsnano.0c08215. PubMed DOI

Takei WJ, Cox DE, Shirane G. Magnetic Structures in the MnSb-CrSb System. Phys. Rev. 1963;129:2008. doi: 10.1103/PhysRev.129.2008. DOI

Snow AI. Neutron Diffraction Invesitgation of the Atomic Moment Orientation in the Antiferromagnetic Compound CrSb. Phys. Rev. 1952;85:365. doi: 10.1103/PhysRev.85.365. DOI

Park IJ, Kwon S, Lake RK. Effects of filling, strain, and electric field on the Néel vector in antiferromagnetic CrSb. Phys. Rev. B. 2020;102:224426. doi: 10.1103/PhysRevB.102.224426. DOI

Moser S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electr. Spec. Rel. Phen. 2017;214:29. doi: 10.1016/j.elspec.2016.11.007. DOI

Gobeli G, Allen FG, Kane EO. Polarization evidence for momentum conservation in photoelectricemission from germanium and silicon. Phys. Rev. Lett. 1963;12:94. doi: 10.1103/PhysRevLett.12.94. DOI

Kjekshus A, Walseth KP. On the Properties of the Cr1+xSb, Fe1+xSb, Co1+xSb, Ni1+xSb, Pd1+xSb, and Pt1+xSb Phases. Acta Chem. Scan. 1969;23:2621. doi: 10.3891/acta.chem.scand.23-2621. DOI

Strocov VN, et al. Three-Dimensional Electron Realm in VSe2 by Soft-X-Ray Photoelectron Spectroscopy: Origin of Charge-Density Waves. Phys. Rev. Lett. 2012;109:086401. doi: 10.1103/PhysRevLett.109.086401. PubMed DOI

Strocov VN, et al. High-Resolution Soft X-Ray Beamline ADRESS at the Swiss Light Source for Resonant Inelastic X-Ray Scattering and Angle-Resolved Photoelectron Spectroscopies. J. Synchrotron Radiat. 2010;17:631. doi: 10.1107/S0909049510019862. PubMed DOI PMC

Strocov VN, et al. Soft-X-Ray ARPES Facility at the ADRESS Beamline of the SLS: Concepts, Technical Realisation and Scientific Applications. J. Synchrotron Radiat. 2014;21:32. doi: 10.1107/S1600577513019085. PubMed DOI

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272. doi: 10.1107/S0021889811038970. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanoscale imaging and control of altermagnetism in MnTe

. 2024 Dec ; 636 (8042) : 348-353. [epub] 20241211

Anisotropic magnetoresistance in altermagnetic MnTe

. 2024 ; 2 (1) : 45. [epub] 20240813

Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate

. 2024 Jun 11 ; 15 (1) : 4961. [epub] 20240611

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...