Altermagnetic lifting of Kramers spin degeneracy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 30960
Austrian Science Fund FWF - Austria
PubMed
38356066
PubMed Central
PMC10866710
DOI
10.1038/s41586-023-06907-7
PII: 10.1038/s41586-023-06907-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Institut de Physique École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Institut für Physik Johannes Gutenberg Universität Mainz Mainz Germany
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Institute of Semiconductor and Solid State Physics Johannes Kepler University of Linz Linz Austria
New Technologies Research Center University of West Bohemia Plzeň Czech Republic
Photon Science Division Paul Scherrer Institut Villigen Switzerland
Physik Institut Universität Zürich Zürich Switzerland
School of Physics and Astronomy University of Nottingham Nottingham United Kingdom
Zobrazit více v PubMed
Kramers HA. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Amsterdam Akad. 1930;33:959–972.
Wigner EP. Über die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. 1932;1932:546–559.
Chappert C, Fert A, Van Dau FN. The emergence of spin electronics in data storage. Nat. Mater. 2007;6:813–823. doi: 10.1038/nmat2024. PubMed DOI
Ralph DC, Stiles MD. Spin transfer torques. J. Magn. Magn. Mater. 2008;320:1190–1216. doi: 10.1016/j.jmmm.2007.12.019. DOI
Bader SD, Parkin S. Spintronics. Annu. Rev. Condens. Matter Phys. 2010;1:71–88. doi: 10.1146/annurev-conmatphys-070909-104123. DOI
Bhatti S, et al. Spintronics based random access memory: a review. Mater. Today. 2017;20:530–548. doi: 10.1016/j.mattod.2017.07.007. DOI
Manchon A, et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019;91:035004. doi: 10.1103/RevModPhys.91.035004. DOI
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI
Franz, M. & Molenkamp, L. (eds) Topological Insulators Vol. 6 (Elsevier, 2013).
Šmejkal L, Mokrousov Y, Yan B, MacDonald AH. Topological antiferromagnetic spintronics. Nat. Phys. 2018;14:242–251. doi: 10.1038/s41567-018-0064-5. DOI
Zang, J., Cros, V. & Hoffmann, A. (eds) Topology in Magnetism (Springer, 2018).
Tokura Y, Yasuda K, Tsukazaki A. Magnetic topological insulators. Nat. Rev. Phys. 2019;1:126–143. doi: 10.1038/s42254-018-0011-5. DOI
Vergniory MG, et al. A complete catalogue of high-quality topological materials. Nature. 2019;566:480–485. doi: 10.1038/s41586-019-0954-4. PubMed DOI
Šmejkal L, MacDonald AH, Sinova J, Nakatsuji S, Jungwirth T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 2022;7:482–496. doi: 10.1038/s41578-022-00430-3. DOI
Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media 2nd edn (Pergamon Press, Oxford, 1984).
Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).
Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018;90:015001. doi: 10.1103/RevModPhys.90.015001. DOI
Krempaský J, et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B. 2016;94:205111. doi: 10.1103/PhysRevB.94.205111. DOI
Sante DD, Barone P, Bertacco R, Picozzi S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 2013;25:509–513. doi: 10.1002/adma.201203199. PubMed DOI
Šmejkal L, Sinova J, Jungwirth T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. 2022;12:031042. doi: 10.1103/PhysRevX.12.031042. DOI
Šmejkal L, Sinova J, Jungwirth T. Emerging research landscape of altermagnetism. Phys. Rev. 2022;12:040501. doi: 10.1103/PhysRevX.12.040501. DOI
Gonzalez Betancourt RD, et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 2023;130:036702. doi: 10.1103/PhysRevLett.130.036702. PubMed DOI
Mazin II. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B. 2023;107:L100418. doi: 10.1103/PhysRevB.107.L100418. DOI
Néel L. Magnetism and local molecular field. Science. 1971;174:985–992. doi: 10.1126/science.174.4013.985. PubMed DOI
Kunitomi N, Hamaguchi Y, Anzai S. Neutron diffraction study on manganese telluride. J. Phys. 1964;25:568–574. doi: 10.1051/jphys:01964002505056800. DOI
Šmejkal L, Železný J, Sinova J, Jungwirth T. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI
Naka M, et al. Spin current generation in organic antiferromagnets. Nat. Commun. 2019;10:4305. doi: 10.1038/s41467-019-12229-y. PubMed DOI PMC
González-Hernández R, et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 2021;126:127701. doi: 10.1103/PhysRevLett.126.127701. PubMed DOI
Naka M, Motome Y, Seo H. Perovskite as a spin current generator. Phys. Rev. B. 2021;103:125114. doi: 10.1103/PhysRevB.103.125114. DOI
Ma H-Y, et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 2021;12:2846. doi: 10.1038/s41467-021-23127-7. PubMed DOI PMC
Šmejkal L, Hellenes AB, González-Hernández R, Sinova J, Jungwirth T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X. 2022;12:011028.
Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020;6:eaaz8809. doi: 10.1126/sciadv.aaz8809. PubMed DOI PMC
Samanta K, et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 2020;127:213904. doi: 10.1063/5.0005017. DOI
Naka M, et al. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B. 2020;102:075112. doi: 10.1103/PhysRevB.102.075112. DOI
Hayami S, Kusunose H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B. 2021;103:L180407. doi: 10.1103/PhysRevB.103.L180407. DOI
Mazin II, Koepernik K, Johannes MD, González-Hernández R, Šmejkal L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 2021;118:e2108924118. doi: 10.1073/pnas.2108924118. PubMed DOI PMC
Naka M, Motome Y, Seo H. Anomalous Hall effect in antiferromagnetic perovskites. Phys. Rev. B. 2022;106:195149. doi: 10.1103/PhysRevB.106.195149. DOI
Feng Z, et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022;5:735–743. doi: 10.1038/s41928-022-00866-z. DOI
Bose A, et al. Tilted spin current generated by an antiferromagnet. Nat. Electron. 2022;5:263–264. doi: 10.1038/s41928-022-00758-2. DOI
Bai H, et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 2022;128:197202. doi: 10.1103/PhysRevLett.128.197202. PubMed DOI
Karube S, et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 2022;129:137201. doi: 10.1103/PhysRevLett.129.137201. PubMed DOI
Strocov VN, et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 2014;21:32–44. doi: 10.1107/S1600577513019085. PubMed DOI
Kriegner D, et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016;7:11623. doi: 10.1038/ncomms11623. PubMed DOI PMC
Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 2011;74:096501. doi: 10.1088/0034-4885/74/9/096501. DOI
Braun J, Minár J, Ebert H. Correlation, temperature and disorder: recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 2018;740:1–34. doi: 10.1016/j.physrep.2018.02.007. DOI
Zhang P, et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 2011;82:043712. doi: 10.1063/1.3585113. PubMed DOI
Kriegner D, et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B. 2017;96:214418. doi: 10.1103/PhysRevB.96.214418. DOI
Ishizaka K, et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011;10:521–526. doi: 10.1038/nmat3051. PubMed DOI
Braun J, et al. Exploring the XPS limit in soft and hard x-ray angle-resolved photoemission using a temperature-dependent one-step theory. Phys. Rev. B. 2013;88:205409. doi: 10.1103/PhysRevB.88.205409. DOI
Hoesch M, et al. Spin-polarized Fermi surface mapping. J. Electron. Spectrosc. Relat. Phenom. 2002;124:263–279. doi: 10.1016/S0368-2048(02)00058-0. DOI
Kriegner D, Wintersberger E, Stangl J. Xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 2013;46:1162–1170. doi: 10.1107/S0021889813017214. PubMed DOI PMC
Damascelli A, Hussain Z, Shen Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003;75:473–541. doi: 10.1103/RevModPhys.75.473. DOI
Strocov V. Photoemission response of 2D electron states. J. Electron. Spectrosc. Relat. Phenom. 2018;229:100–107. doi: 10.1016/j.elspec.2018.09.001. DOI
Powell CJ, Jablonski A. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Surf. Anal. 2011;17:170–176. doi: 10.1384/jsa.17.170. DOI
Strocov VN, et al. Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 2012;109:086401. doi: 10.1103/PhysRevLett.109.086401. PubMed DOI
Weber F, et al. Three-dimensional Fermi surface of 2H–NbSe2: implications for the mechanism of charge density waves. Phys. Rev. B. 2018;97:235122. doi: 10.1103/PhysRevB.97.235122. DOI
Schröter N, et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science. 2020;369:179–183. doi: 10.1126/science.aaz3480. PubMed DOI
Strocov VN, et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 2010;17:631–643. doi: 10.1107/S0909049510019862. PubMed DOI PMC
Dil JH. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter. 2009;21:403001. doi: 10.1088/0953-8984/21/40/403001. PubMed DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;78:1396–1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI
Minár J. Correlation effects in transition metals and their alloys studied using the fully self-consistent KKR-based LSDA + DMFT scheme. J. Phys. Condens. Matter. 2011;23:253201. doi: 10.1088/0953-8984/23/25/253201. DOI
Lloyd P. Wave propagation through an assembly of spheres: II. The density of single-particle eigenstates. Proc. Phys. Soc. 1967;90:207. doi: 10.1088/0370-1328/90/1/323. DOI
Lloyd P, Smith P. Multiple scattering theory in condensed materials. Adv. Phys. 1972;21:69–142. doi: 10.1080/00018737200101268. DOI
Nanoscale imaging and control of altermagnetism in MnTe
Non-relativistic torque and Edelstein effect in non-collinear magnets
Anisotropic magnetoresistance in altermagnetic MnTe
Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
Direct observation of altermagnetic band splitting in CrSb thin films