Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

. 2016 Jun 09 ; 7 () : 11623. [epub] 20160609

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27279433

Grantová podpora
J 3523 Austrian Science Fund FWF - Austria
European Research Council - International

Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.

Zobrazit více v PubMed

Shick A. B., Khmelevskyi S., Mryasov O. N., Wunderlich J. & Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

MacDonald A. H. & Tsoi M. Antiferromagnetic metal spintronics. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 3098–3114 (2011). PubMed

Duine R. Spintronics an alternating alternative. Nat. Mater. 10, 344–345 (2011). PubMed

Gomonay E. V. & Loktev V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).

Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed

Park B. G. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011). PubMed

Petti D. et al.. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).

Marti X. et al.. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014). PubMed

Moriyama T. et al.. Sequential write-read operations in FeRh antiferromagnetic memory. Appl. Phys. Lett. 107, 122403 (2015).

Wadley P. et al.. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). PubMed

Zhou Y. Physics, 1963–1970 Elsevier Science (2013).

McGuire T. & Potter R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

Akinaga H., Ando K., Abe T. & Yoshida S. Control of the crystal orientation of zinc-blende MnTe epitaxial films grown on GaAs. J. Appl. Phys. 74, 746–748 (1993).

Janik E. et al.. Structural properties of cubic MnTe layers grown by MBE. Thin Solid Films 267, 74–78 (1995).

Hennion B., Szuszkiewicz W., Dynowska E., Janik E. & Wojtowicz T. Spin-wave measurements on MBE-grown zinc-blende structure MnTe by inelastic neutron scattering. Phys. Rev. B 66, 224426 (2002).

Allen J. W., Lucovsky G. & Mikkelsen J. C. Optical properties and electronic structure of crossroads material MnTe. Solid State Commun. 24, 367–370 (1977).

Pietsch U., Holý V. & Baumbach T. High-Resolution X-Ray Scattering 2nd edn, ch. 8, 205–233 Springer-Verlag, New York, USA (2004).

Zanmarchi G. Optical measurements on the antiferromagnetic semiconductor MnTe. J. Phys. Chem. Solids 28, 2123–2130 (1967).

Ferrer-Roca C., Segura A., Reig C. & Muñoz V. Temperature and pressure dependence of the optical absorption in hexagonal MnTe. Phys. Rev. B 61, 13679–13686 (2000).

Madelung O., Rössler U. & Schulz M. (Eds) MnTe: Crystal Structure, Physical Properties Vol. 41D, SpringerMaterials, Springer-Verlag, Berlin, Heidelberg (2000).

Kunitomi N., Hamaguchi Y. & Anzai S. Neutron diffraction study on manganese telluride. J. Phys. Paris 25, 568–574 (1964).

Szuszkiewicz W., Hennion B., Witkowska B., Usakowska E. & Mycielski A. Neutron scattering study of structural and magnetic properties of hexagonal MnTe. Phys. Stat. Sol. C 2, 1141–1146 (2005).

Komatsubara T., Murakami M. & Hirahara E. Magnetic properties of manganese telluride single crystals. J. Phys. Soc. Jpn. 18, 356–364 (1963).

Magnin Y. & Diep H. T. Monte Carlo study of magnetic resistivity in semiconducting MnTe. Phys. Rev. B 85, 184413 (2012).

Przedziecka E. et al.. Preparation and characterization of hexagonal MnTe and ZnO layers. Phys. Stat. Sol. C 2, 1218–1223 (2005).

Bogdanov A. N. & Dragunov I. E. Metastable states, spin-reorientation transitions, and domain structures in planar hexagonal antiferromagnets. Low Temp. Phys. 24, 852–857 (1998).

Locatelli N. et al.. Spintronic devices as key elements for energy-efficient neuroinspired architectures. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 994–999Institute of Electrical and Electronics Engineers (IEEE) (2015).

Nellist P. & Pennycook S. Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999).

Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...