Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
J 3523
Austrian Science Fund FWF - Austria
European Research Council - International
PubMed
27279433
PubMed Central
PMC4906165
DOI
10.1038/ncomms11623
PII: ncomms11623
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.
Charles University Prague Ke Karlovu 3 Praha 2 121 16 Czech Republic
National Technical University 'Kharkiv Polytechnic Institute' Frunze Str 21 Kharkiv 61002 Ukraine
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Shick A. B., Khmelevskyi S., Mryasov O. N., Wunderlich J. & Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).
MacDonald A. H. & Tsoi M. Antiferromagnetic metal spintronics. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 3098–3114 (2011). PubMed
Duine R. Spintronics an alternating alternative. Nat. Mater. 10, 344–345 (2011). PubMed
Gomonay E. V. & Loktev V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).
Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed
Park B. G. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011). PubMed
Petti D. et al.. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).
Marti X. et al.. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014). PubMed
Moriyama T. et al.. Sequential write-read operations in FeRh antiferromagnetic memory. Appl. Phys. Lett. 107, 122403 (2015).
Wadley P. et al.. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). PubMed
Zhou Y. Physics, 1963–1970 Elsevier Science (2013).
McGuire T. & Potter R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
Akinaga H., Ando K., Abe T. & Yoshida S. Control of the crystal orientation of zinc-blende MnTe epitaxial films grown on GaAs. J. Appl. Phys. 74, 746–748 (1993).
Janik E. et al.. Structural properties of cubic MnTe layers grown by MBE. Thin Solid Films 267, 74–78 (1995).
Hennion B., Szuszkiewicz W., Dynowska E., Janik E. & Wojtowicz T. Spin-wave measurements on MBE-grown zinc-blende structure MnTe by inelastic neutron scattering. Phys. Rev. B 66, 224426 (2002).
Allen J. W., Lucovsky G. & Mikkelsen J. C. Optical properties and electronic structure of crossroads material MnTe. Solid State Commun. 24, 367–370 (1977).
Pietsch U., Holý V. & Baumbach T. High-Resolution X-Ray Scattering 2nd edn, ch. 8, 205–233 Springer-Verlag, New York, USA (2004).
Zanmarchi G. Optical measurements on the antiferromagnetic semiconductor MnTe. J. Phys. Chem. Solids 28, 2123–2130 (1967).
Ferrer-Roca C., Segura A., Reig C. & Muñoz V. Temperature and pressure dependence of the optical absorption in hexagonal MnTe. Phys. Rev. B 61, 13679–13686 (2000).
Madelung O., Rössler U. & Schulz M. (Eds) MnTe: Crystal Structure, Physical Properties Vol. 41D, SpringerMaterials, Springer-Verlag, Berlin, Heidelberg (2000).
Kunitomi N., Hamaguchi Y. & Anzai S. Neutron diffraction study on manganese telluride. J. Phys. Paris 25, 568–574 (1964).
Szuszkiewicz W., Hennion B., Witkowska B., Usakowska E. & Mycielski A. Neutron scattering study of structural and magnetic properties of hexagonal MnTe. Phys. Stat. Sol. C 2, 1141–1146 (2005).
Komatsubara T., Murakami M. & Hirahara E. Magnetic properties of manganese telluride single crystals. J. Phys. Soc. Jpn. 18, 356–364 (1963).
Magnin Y. & Diep H. T. Monte Carlo study of magnetic resistivity in semiconducting MnTe. Phys. Rev. B 85, 184413 (2012).
Przedziecka E. et al.. Preparation and characterization of hexagonal MnTe and ZnO layers. Phys. Stat. Sol. C 2, 1218–1223 (2005).
Bogdanov A. N. & Dragunov I. E. Metastable states, spin-reorientation transitions, and domain structures in planar hexagonal antiferromagnets. Low Temp. Phys. 24, 852–857 (1998).
Locatelli N. et al.. Spintronic devices as key elements for energy-efficient neuroinspired architectures. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 994–999Institute of Electrical and Electronics Engineers (IEEE) (2015).
Nellist P. & Pennycook S. Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999).
Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
Anisotropic magnetoresistance in altermagnetic MnTe
Altermagnetic lifting of Kramers spin degeneracy
Anisotropic magnetoresistance: materials, models and applications
Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Terahertz electrical writing speed in an antiferromagnetic memory
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility