Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28524862
PubMed Central
PMC5454531
DOI
10.1038/ncomms15434
PII: ncomms15434
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.
Department of Materials ETH Zürich Hönggerbergring 64 Zürich CH 8093 Switzerland
IGS Research Calle La Coma Nave 8 La Pobla de Mafumet Tarragona 43140 Spain
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Chappert C., Fert A. & Van Dau F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007). PubMed
Chernyshov A. et al.. Evidence for reversible control of magnetization in a ferromagnetic material by means of spinorbit magnetic field. Nat. Phys. 5, 656–659 (2009).
Miron I. M. et al.. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011). PubMed
Liu L. et al.. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). PubMed
Garello K. et al.. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013). PubMed
Sinova J., Valenzuela S. O., Wunderlich J., Back C. H. & Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 87, 1214–1260 (2015).
Železný J. et al.. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). PubMed
Wadley P. et al.. ‘Electrical switching of an antiferromagnet'. Science 351, 587–590 (2016). PubMed
MacDonald A. H. & Tsoi M. ‘Antiferromagnetic metal spintronics'. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 3098–3114 (2011). PubMed
Gomonay E. V. & Loktev V. M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 40, 17–35 (2014).
Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed
Baltz V. et al.. An tiferromagnetism : the next agship magnetic order for spintronics? Preprint at https://arxiv.org/abs/1606.04284 (2016).
Grzybowski M. J. et al.. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017). PubMed
Waldrop M. M. The chips are down for Moore's law. Nature 530, 145–147 (2016). PubMed
Wadley P. et al.. Tetragonal phase of epitaxial room-temperature anti ferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013). PubMed
Kriegner D. et al.. Multiple stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016). PubMed PMC
Ranmuthu K. T. M., Ranmuthu I. W., Pohm A. V., Comstock C. S. & Hassoun M. 10–35 nanosecond magneto-resistive memories. IEEE Trans. Magn. 26, 2532–2534 (1990).
Daughton J. Magnetoresistive memory technology. Thin Solid Films 216, 162–168 (1992).
Lequeux S. et al.. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016). PubMed PMC
Wadley P. et al.. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 5, 17079 (2015). PubMed PMC
Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Terahertz electrical writing speed in an antiferromagnetic memory
Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films