Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
766566
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Future and Emerging Technologies (H2020 Excellent Science - Future and Emerging Technologies)
EP/V031201
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
DP200101027
Centre of Excellence for Electromaterials Science, Australian Research Council (ARC Centre of Excellence for Electromaterials Science)
PubMed
37157021
PubMed Central
PMC10427425
DOI
10.1038/s41565-023-01386-3
PII: 10.1038/s41565-023-01386-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Topologically protected magnetic textures are promising candidates for information carriers in future memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. These textures-nanoscale whirls in the magnetic order-include skyrmions, half-skyrmions (merons) and their antiparticles. Antiferromagnets have been shown to host versions of these textures that have high potential for terahertz dynamics, deflection-free motion and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin-film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The merons and antimerons are localized on 180° domain walls, and move in the direction of the current pulses. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high-density, high-speed magnetic memory devices.
Diamond Light Source Chilton UK
Institut für Physik Johannes Gutenberg Universität Mainz Mainz Germany
Institute of Physics Czech Academy of Sciences Prague Czech Republic
School of Physics and Astronomy University of Nottingham Nottingham UK
School of Physics The University of New South Wales Sydney New South Wales Australia
Zobrazit více v PubMed
Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 1973;6:1181. doi: 10.1088/0022-3719/6/7/010. PubMed DOI
Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T. Magnetic vortex core observation in circular dots of permalloy. Science. 2000;289:930–932. doi: 10.1126/science.289.5481.930. PubMed DOI
Kläui M, et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appl. Phys. Lett. 2006;88:232507. doi: 10.1063/1.2209177. DOI
Jiang W, et al. Blowing magnetic skyrmion bubbles. Science. 2015;349:283–286. doi: 10.1126/science.aaa1442. PubMed DOI
Coïsson M. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy. Sci. Rep. 2016;6:29904. doi: 10.1038/srep29904. PubMed DOI PMC
Gao N, et al. Creation and annihilation of topological meron pairs in in-plane magnetized films. Nat. Commun. 2019;10:5603. doi: 10.1038/s41467-019-13642-z. PubMed DOI PMC
Gao Y, et al. Spontaneous (anti)meron chains in the domain walls of van der Waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 2020;32:2005228. doi: 10.1002/adma.202005228. PubMed DOI
Li Z, et al. Field-free topological behavior in the magnetic domain wall of ferrimagnetic GdFeCo. Nat. Commun. 2021;12:5604. doi: 10.1038/s41467-021-25926-4. PubMed DOI PMC
Wang Y, et al. Electric field-driven rotation of magnetic vortex originating from magnetic anisotropy reorientation. Adv. Electron. Mater. 2021;8:2100561. doi: 10.1002/aelm.202100561. DOI
Zhang S, et al. Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. Sci. Adv. 2020;6:eaay1876. doi: 10.1126/sciadv.aay1876. PubMed DOI PMC
Göbel B, Mook A, Henk J, Mertig I, Tretiakov OA. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B. 2019;99:060407. doi: 10.1103/PhysRevB.99.060407. DOI
Göbel B, Mertig I, Tretiakov OA. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 2021;895:1–28. doi: 10.1016/j.physrep.2020.10.001. DOI
Barker J, Tretiakov OA. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 2016;116:147203. doi: 10.1103/PhysRevLett.116.147203. PubMed DOI
Thiele AA. Steady-state motion of magnetic domains. Phys. Rev. Lett. 1973;30:230–233. doi: 10.1103/PhysRevLett.30.230. DOI
Tretiakov OA, et al. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 2008;100:127204. doi: 10.1103/PhysRevLett.100.127204. PubMed DOI
Tveten EG, Qaiumzadeh A, Tretiakov OA, Brataas A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 2013;110:127208. doi: 10.1103/PhysRevLett.110.127208. PubMed DOI
Kolesnikov AG, et al. Composite topological structure of domain walls in synthetic antiferromagnets. Sci. Rep. 2018;8:15794. doi: 10.1038/s41598-018-33780-6. PubMed DOI PMC
Sort J, et al. Imprinting vortices into antiferromagnets. Phys. Rev. Lett. 2006;97:067201. doi: 10.1103/PhysRevLett.97.067201. PubMed DOI
Wu J, et al. Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 2011;7:303–306. doi: 10.1038/nphys1891. DOI
Chmiel FP, et al. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 2018;17:581–585. doi: 10.1038/s41563-018-0101-x. PubMed DOI
Gao S, et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature. 2020;586:37–41. doi: 10.1038/s41586-020-2716-8. PubMed DOI
Jani H, et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature. 2021;590:74–79. doi: 10.1038/s41586-021-03219-6. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 2017;8:15434. doi: 10.1038/ncomms15434. PubMed DOI PMC
Olejník K, et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 2018;4:eaar3566. doi: 10.1126/sciadv.aar3566. PubMed DOI PMC
Wadley P, et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 2018;13:362–365. doi: 10.1038/s41565-018-0079-1. PubMed DOI
Kašpar Z, et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 2021;4:30–37. doi: 10.1038/s41928-020-00506-4. DOI
Zubáč J, et al. Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Rev. B. 2021;104:184424. doi: 10.1103/PhysRevB.104.184424. DOI
Krizek F, et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 2020;4:014409. doi: 10.1103/PhysRevMaterials.4.014409. DOI
Janda T, et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 2020;4:094413. doi: 10.1103/PhysRevMaterials.4.094413. DOI
Wadley P, et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 2017;7:11147. doi: 10.1038/s41598-017-11653-8. PubMed DOI PMC
Reimers S, et al. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun. 2022;13:724. doi: 10.1038/s41467-022-28311-x. PubMed DOI PMC
Máca F, et al. Physical properties of the tetragonal CuMnAs: a first-principles study. Phys. Rev. B. 2017;96:094406. doi: 10.1103/PhysRevB.96.094406. DOI
Kurebayashi D, Tretiakov OA. Skyrmion nucleation on the surface of a topological insulator. Phys. Rev. Res. 2022;4:043105. doi: 10.1103/PhysRevResearch.4.043105. DOI
Hertel R, Schneider CM. Exchange explosions: magnetization dynamics during vortex–antivortex annihilation. Phys. Rev. Lett. 2006;97:177202. doi: 10.1103/PhysRevLett.97.177202. PubMed DOI
Gomonay O, Jungwirth T, Sinova J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 2016;117:017202. doi: 10.1103/PhysRevLett.117.017202. PubMed DOI
Tomasello R, et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 2014;4:6784. doi: 10.1038/srep06784. PubMed DOI PMC
Geng LD, Jin YM. Magnetic vortex racetrack memory. J. Magn. Magn. Mater. 2017;423:84–89. doi: 10.1016/j.jmmm.2016.09.062. DOI
Juge R, et al. Helium ions put magnetic skyrmions on the track. Nano Lett. 2021;21:2989–2996. doi: 10.1021/acs.nanolett.1c00136. PubMed DOI
Yu H, Xiao J, Schultheiss H. Magnetic texture based magnonics. Phys. Rep. 2021;905:1–59. doi: 10.1016/j.physrep.2020.12.004. DOI