Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings

. 2020 Oct ; 586 (7827) : 37-41. [epub] 20200923

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32968283
Odkazy

PubMed 32968283
DOI 10.1038/s41586-020-2716-8
PII: 10.1038/s41586-020-2716-8
Knihovny.cz E-zdroje

Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications1-4. Skyrmions have so far been observed in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, but theoretically skyrmions with anti-parallel neighbouring spins are also possible. Such antiferromagnetic skyrmions may allow more flexible control than conventional ferromagnetic skyrmions5-10. Here, by combining neutron scattering measurements and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice is stabilized in MnSc2S4 through anisotropic couplings. The observed lattice is composed of three antiferromagnetically coupled sublattices, and each sublattice is a triangular skyrmion lattice that is fractionalized into two parts with an incipient meron (half-skyrmion) character11,12. Our work demonstrates that the theoretically proposed antiferromagnetic skyrmions can be stabilized in real materials and represents an important step towards their implementation in spintronic devices.

Zobrazit více v PubMed

Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009). PubMed

Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010). PubMed

Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013). PubMed

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016). PubMed

Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016). PubMed PMC

Rosales, H. D., Cabra, D. C. & Pujol, P. Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice. Phys. Rev. B 92, 214439 (2015).

Díaz, S. A., Klinovaja, J. & Loss, D. Topological magnons and edge states in antiferromagnetic skyrmion crystals. Phys. Rev. Lett. 122, 187203 (2019). PubMed

Kamiya, Y. & Batista, C. D. Magnetic vortex crystals in frustrated Mott insulator. Phys. Rev. X 4, 011023 (2014).

Lin, S.-Z., Saxena, A. & Batista, C. D. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys. Rev. B 91, 224407 (2015).

Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018). PubMed

Wen, X.-G. Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010). PubMed

Yu, X. et al. Skyrmion ow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012). PubMed

White, J. S. et al. Electric field control of the skyrmion lattice in Cu PubMed

Rößler, U. K., Bogdanov, A. N. & Peiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006). PubMed

Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019). PubMed

Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019). PubMed PMC

Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020). PubMed

Sokolov, D. A. et al. Metamagnetic texture in a polar antiferromagnet. Nat. Phys. 15, 671–677 (2019).

Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010). PubMed

Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012). PubMed

Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015). PubMed PMC

Sutcliffe, P. Skyrmion knots in frustrated magnets. Phys. Rev. Lett. 118, 247203 (2017). PubMed

Rybakov, F. N. et al. Magnetic hopfions in solids. Preprint at https://arxiv.org/abs/1904.00250 (2019).

Lohani, V., Hickey, C., Masell, J. & Rosch, A. Quantum skyrmions in frustrated ferromagnets. Phys. Rev. X 9, 041063 (2019).

Fritsch, V. et al. Spin and orbital frustration in MnSc PubMed

Gao, S. et al. Spiral spin-liquid and the emergence of a vortex-like state in MnSc

Bergman, D., Alicea, J., Gull, E., Trebst, S. & Balents, L. Order-by-disorder and spiral spin liquid in frustrated diamond-lattice antiferromagnets. Nat. Phys. 3, 487–491 (2007).

Lee, S. & Balents, L. Theory of the ordered phase in A-site antiferromagnetic spinels. Phys. Rev. B 78, 144417 (2008).

Iqbal, Y., Müller, T., Jeschke, H. O., Thomale, R. & Reuther, J. Stability of the spiral spin liquid in MnSc

Zaharko, O. et al. Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl

MacDougall, G. J. et al. Revisiting the ground state of CoAl

Ge, L. et al. Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh

Watanabe, H. On the ground level splitting of Mn

Akagi, Y., Udagawa, M. & Motome, Y. Hidden multiple-spin interactions as an origin of spin scalar chiral order in frustrated Kondo lattice models. Phys. Rev. Lett. 108, 096401 (2012). PubMed

Hayami, S., Ozawa, R. & Motome, Y. Effective bilinear–biquadratic model for noncoplanar ordering in itinerant magnets. Phys. Rev. B 95, 224424 (2017).

Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013). PubMed

Karube, K. et al. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat. Mater. 15, 1237–1242 (2016). PubMed

Attig, J. & Trebst, S. Classical spin spirals in frustrated magnets from free-fermion band topology. Phys. Rev. B 96, 085145 (2017).

Balla, P., Iqbal, Y. & Penc, K. Affine lattice construction of spiral surfaces in frustrated Heisenberg models. Phys. Rev. B 100, 140402 (2019).

Göbel, B., Mook, A., Henk, J. & Mertig, I. Antiferromagnetic skyrmion crystals: generation, topological Hall, and topological spin Hall effect. Phys. Rev. B 96, 060406 (2017).

Bessarab, P. F. et al. Stability and lifetime of antiferromagnetic skyrmions. Phys. Rev. B 99, 140411 (2019).

van Hoogdalem, K. A., Tserkovnyak, Y. & Loss, D. Magnetic texture-induced thermal Hall effects. Phys. Rev. B 87, 024402 (2013).

Daniels, M. W., Yu, W., Cheng, R., Xiao, J. & Xiao, D. Topological spin Hall effects and tunable skyrmion Hall effects in uniaxial antiferromagnetic insulators. Phys. Rev. B 99, 224433 (2019).

Roldán-Molina, A., Nunez, A. S. & Fernández-Rossier, J. Topological spin waves in the atomic-scale magnetic skyrmion crystal. New J. Phys. 18, 045015 (2016).

Krimmel, A. et al. Magnetic ordering and spin excitations in the frustrated magnet MnSc

Boehm, M. et al. ThALES—three axis low energy spectroscopy for highly correlated electron systems. Neutron News 26, 18–21 (2015).

Zaharko, O. et al. Spin dynamics in the order-by-disorder candidate MnSc

Schneidewind, A. & Čermák, P. PANDA: cold three axes spectrometer. J. Large-Scale Res. Facilities 1, A12 (2015).

Utschick, C., Skoulatos, M., Schneidewind, A. & Böni, P. Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions. Nucl. Instr. Meth. Phys. Res. A 837, 88–91 (2016).

Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015). PubMed

Johnston, D. C. et al. Magnetic exchange interactions in BaMn

Kézsmárki, I. et al. Néel type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature

. 2023 Aug ; 18 (8) : 849-853. [epub] 20230508

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...