Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB

. 2022 Nov 03 ; 82 (21) : 4049-4063.e6. [epub] 20220930

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36182693

Grantová podpora
R35 GM127094 NIGMS NIH HHS - United States
R35 GM136275 NIGMS NIH HHS - United States
ZIA ES050165 Intramural NIH HHS - United States

Odkazy

PubMed 36182693
PubMed Central PMC9637774
DOI 10.1016/j.molcel.2022.09.002
PII: S1097-2765(22)00853-X
Knihovny.cz E-zdroje

In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs‑PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer‑1⋅Loqs‑PB heterodimer. The Dicer-1 dsRBD and three Loqs‑PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer‑1⋅Loqs‑PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, and Zwart PH (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221. PubMed PMC

Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G., Eddy SR., Griffiths-Jones S., Marshall M., Matzke M., Ruvkun G., and Tuschl TS. (2003). A uniform system for microRNA annotation. RNA 9, 277–279. PubMed PMC

Baeyens KJ, De Bondt HL, and Holbrook SR (1995). Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat. Struct. Biol 2, 56–62. PubMed

Bartel DP (2018). Metazoan MicroRNAs. Cell 173, 20–51. PubMed PMC

Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, and Ji X. (2001). Crystallographic and Modeling Studies of RNase III Suggest a Mechanism for Double-Stranded RNA Cleavage. Structure 9, 1225–1236. PubMed

Brennecke J, Stark A, Russell RB, and Cohen SM (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85. PubMed PMC

Campbell FE, Cassano AG, Anderson VE, and Harris ME (2002). Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J. Mol. Biol 317, 21–40. PubMed

Cenik E, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall T, and Zamore P. (2011). Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease. Mol. Cell 42, 172–184. PubMed PMC

Chen S, Liu W, Naganuma M, Tomari Y, and Iwakawa HO (2022). Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. Nucleic Acids Res. gkac223. PubMed PMC

Chen VB., Arendall WB., Headd JJ., Keedy DA., Immormino RM., Kapral GJ., Murray LW., Richardson JS., and Richardson DC. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12–21. PubMed PMC

Chen X. (2009). Small RNAs and Their Roles in Plant Development. Annual Review of Cell and Developmental Biology 25, 21–44. PubMed PMC

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, and Shiekhattar R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744. PubMed PMC

Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, and Bartel DP (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009. PubMed PMC

Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, and Ji X. (2013). RNase III: Genetics and function; structure and mechanism. Annu. Rev. Genet 47, 405–431. PubMed PMC

Daniels SM, Melendez-Peña CE, Scarborough RJ, Daher A, Christensen HS, El Far M, Purcell DFJ, Lainé S, and Gatignol A. (2009). Characterization of the TRBP domain required for Dicer interaction and function in RNA interference. BMC Molecular Biology 10, 10.1186/1471-2199. PubMed DOI PMC

Denli AM, Tops BB, Plasterk RH, Ketting RF, and Hannon GJ (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235. PubMed

Dong Q, Hu B, and Zhang C. (2022). microRNAs and Their Roles in Plant Development. Front Plant Sci 13, 824240. PubMed PMC

JJ D. (1982). Ribonuclease III. In Volume15, PD B, ed. (New York: Academic Press; ), pp. 485–499.

Emsley P, Lohkamp B, Scott WG, and Cowtan K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501. PubMed PMC

Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., and Hassabis D. (2021). Protein complex prediction with AlphaFold-Multimer. bioRxiv 10.1101/2021.10.04.463034. DOI

Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, and Joo C. (2016). TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7, 13694. PubMed PMC

Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, and Zamore PD (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236. PubMed PMC

Förstemann K, Horwich MD, Wee L, Tomari Y, and Zamore PD (2007). Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1. Cell 130, 287–297. PubMed PMC

Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, and Zamore PD (2012). Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533–546. PubMed PMC

Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, and Ji X. (2008). A stepwise model for double-stranded RNA processing by ribonuclease III. Mol. Microbiol 67, 143–154. PubMed

Gleghorn ML, and Maquat LE (2014). ‘Black sheep’ that don’t leave the double-stranded RNA-binding domain fold. Trends Biochem. Sci 39, 328–340. PubMed PMC

Gregory RI., Yan KP., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., and Shiekhattar R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240. PubMed

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, and Mello CC (2001). Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell 106, 23–34. PubMed

Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, and Kay MA (2012). The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911. PubMed PMC

Gurtan AM, Lu V, Bhutkar A, and Sharp PA (2012). In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18, 1116–1122. PubMed PMC

Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A, and Filipowicz W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967. PubMed PMC

Han J, Lee Y, Yeom KH, Kim YK, Jin H, and Kim VN (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027. PubMed PMC

Han J., Lee Y., Yeom KH., Nam JW., Heo I., Rhee JK., Sohn SY., Cho Y., Zhang BT., and Ki VN. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901. PubMed

Hansen SR, Aderounmu AM, Donelick HM, and Bass BL (2019). Dicer’s Helicase Domain: A Meeting Place for Regulatory Proteins. Cold Spring Harb. Symp. Quant. Biol 84, 185–193. PubMed PMC

Holbrook SR, Cheong C, Tinoco I, and Kim SH (1991). Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature 353, 579–581. PubMed

Hubbard SJ, and Thornton JM (1993). naccess. Computer Program, Department of Biochemistry and Molecular Biology, University College London

Hutvágner G, McLachlan J, Pasquinelli AE, Balint É, Tuschl T, and Zamore PD (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838. PubMed

Jakob L, Treiber T, Treiber N, Gust A, Kramm K, Hansen K, Stotz M, Wankerl L, Herzog F, Hannus S, Grohmann D, and Meister G. (2016). Structural and functional insights into the fly microRNA biogenesis factor Loquacious. RNA 22, 383–396. PubMed PMC

Jiang F, Ye X, Liu X, Fincher L, McKearin D, and Liu Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679. PubMed PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, and Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. PubMed PMC

Kawamata T., Seitz H., and Tomari Y. (2009). Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol 16, 953–960. PubMed

Khvorova A, Reynolds A, and Jayasena SD (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216. PubMed

Knight SW, and Bass BL (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271. PubMed PMC

Kremer JR, Mastronarde DN, and McIntosh JR (1996). Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol 116, 71–76. PubMed

Kurzynska-Kokorniak A, Pokornowska M, Koralewska N, Hoffmann W, Bienkowska-Szewczyk K, and Figlerowicz M. (2016). Revealing a new activity of the human Dicer DUF283 domain in vitro. Scientific Reports 6, 23989. PubMed PMC

Kwon S, Nguyen T, Choi Y-G, Jo M, Hohng S, Kim V, and Woo J-S (2016). Structure of Human DROSHA. Cell 164, 81–90. PubMed

Lai EC (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet 30, 363–364. PubMed

Lau P-W, Potter CS, Carragher B, and MacRae IJ (2009). Structure of the Human Dicer-TRBP Complex by Electron Microscopy. Structure 17, 1326–1332. PubMed PMC

Lau PW, Guiley KZ, De N, Potter CS, Carragher B, and MacRae IJ (2012). The molecular architecture of human Dicer. Nat. Struct. Mol. Biol 19, 436–440. PubMed PMC

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, and Kim VN (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419. PubMed

Lee Y, Hur I, Park S-Y, Kim Y-K, Suh MR, and Kim VN (2006). The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532. PubMed PMC

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, and Burge CB (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798. PubMed

Lim MY., Ng AW., Chou Y., Lim TP., Simcox A., Tucker-Kellogg G., and Okamura K. (2016). The Drosophila Dicer-1 Partner Loquacious Enhances miRNA Processing from Hairpins with Unstable Structures at the Dicing Site. Cell Rep 15, 1795–1808. PubMed PMC

Lingel A, Simon B, Izaurralde E, and Sattler M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469. PubMed

Lingel A, Simon B, Izaurralde E, and Sattler M. (2004). Nucleic acid 3’-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol 11, 576–577. PubMed

Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, and Wang HW (2018). Cryo-EM Structure of Human Dicer and Its Complexes with a Pre-miRNA Substrate. Cell 173, 1191–1203.e12. PubMed

Luo QJ, Zhang J, Li P, Wang Q, Zhang Y, Roy-Chaudhuri B, Xu J, Kay MA, and Zhang QC (2021). RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat Commun 12, 3397. PubMed PMC

Ma JB, Ye K, and Patel DJ (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322. PubMed PMC

MacRae IJ, Zhou K, and Doudna JA (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol 14, 934–940. PubMed

Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, and Doudna JA (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198. PubMed

Maniataki E, and Mourelatos Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990. PubMed PMC

Mastronarde DN (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol 152, 36–51. PubMed

Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., and Tuschl T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197. PubMed

Meng W, and Nicholson AW (2008). Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem. J 410, 39–48. PubMed

Moore MJ, and Query CC (2000). Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123. PubMed

Moore MJ, and Sharp PA (1993). Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368. PubMed

Nicholson AW (2014). Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA 5, 31–48. PubMed PMC

Okamura K, Ishizuka A, Siomi H, and Siomi MC (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666. PubMed PMC

Ota H, Sakurai M, Gupta R, Valente L, Wulff B-E, Ariyoshi K, Iizasa H, Davuluri R., and Nishikura K. (2013). ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 153, 575–589. PubMed PMC

Park J-E, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, and Kim VN (2011). Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205. PubMed PMC

Partin AC, Zhang K, Jeong BC, Herrell E, Li S, Chiu W, and Nam Y. (2020). Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Mol. Cell 78, 411–422.e4. PubMed PMC

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, and Ferrin TE (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82. PubMed PMC

Provost P. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874. PubMed PMC

Punjani A, Zhang H, and Fleet DJ (2020). Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17, 1214–1221. PubMed

Qin H, Chen F, Huan X, Machida S, Song J, and Yuan YA (2010). Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16, 474–481. PubMed PMC

Rohou A, and Grigorieff N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol 192, 216–221. PubMed PMC

Saenger W. (1984). Chapter 6: Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking. In Principles of Nucleic Acid Structure, Springer; New York, NY: ), pp. 116–158.

Saito K, Ishizuka A, Siomi H, and Siomi MC (2005). Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235. PubMed PMC

Sassa A, Beard WA, Shock DD, and Wilson SH (2013). Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity. J Vis Exp e50695. PubMed PMC

Savir Y, and Tlusty T. (2007). Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS One 2, e468. PubMed PMC

Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, and Zamore PD (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208. PubMed

Sheng J, Larsen A, Heuberger BD, Blain JC, and Szostak JW (2014). Crystal structure studies of RNA duplexes containing s(2)U:A and s(2)U:U base pairs. J. Am. Chem. Soc 136, 13916–13924. PubMed PMC

Sinha NK, Iwasa J, Shen PS, and Bass BL (2018). Dicer uses distinct modules for recognizing dsRNA termini. Science 359, 329–334. PubMed PMC

Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, and Joshua-Tor L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol 10, 1026–1032. PubMed

Sun W, Pertzev A, and Nicholson AW (2005). Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res. 33, 807–815. PubMed PMC

Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, and Wang HW (2013). Substrate-specific structural rearrangements of human Dicer. Nat. Struct. Mol. Biol 20, 662–670. PubMed PMC

Tian Y., Simanshu DK., Ma JB., Park JE., Heo I., Kim VN., and Patel DJ. (2014). A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53, 606–616. PubMed PMC

Tomari Y, Du T, and Zamore PD (2007). Sorting of Drosophila small silencing RNAs. Cell 130, 299–308. PubMed PMC

Tsutsumi A, Kawamata T, Izumi N, Seitz H, and Tomari Y. (2011). Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat. Struct. Mol. Biol 18, 1153–1158. PubMed

Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, and Raunser S. (2019). SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2, 218. PubMed PMC

Wagner T, and Raunser S. (2020). The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows. Commun Biol 3, 61. PubMed PMC

Wang H-W, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, and Nogales E. (2009). Structural insights into RNA processing by the human RISC-loading complex. Nature Structural & Molecular Biology 16, 1148–1153. PubMed PMC

Wang Q., Xue Y., Zhang L., Zhong Z., Feng S., Wang C., Xiao L., Yang Z., Harris CJ., Wu Z., Zhai J., Yang M., Li S., Jacobsen SE., and Du J. (2021). Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 374, 1152–1157. PubMed PMC

Watkins AM, Rangan R, and Das R. (2020). FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure 28, 963–976.e6. PubMed PMC

Wei X, Ke H, Wen A, Gao B, Shi J, and Feng Y. (2021). Structural basis of microRNA processing by Dicer-like 1. Nat Plants 7, 1389–1396. PubMed

Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, and Doudna JA (2015). Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell 57, 397–407. PubMed PMC

Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, and Turner DH (1998). Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson−Crick Base Pairs. Biochemistry 37, 14719–14735. PubMed

Yan KS, Yan S, Farooq A, Han A, Zeng L, and Zhou MM (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474. PubMed

Yang SW, Chen HY, Yang J, Machida S, Chua NH, and Yuan YA (2010). Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18, 594–605. PubMed PMC

Ye X, Paroo Z, and Liu Q. (2007). Functional anatomy of the Drosophila microRNA-generating enzyme. J. Biol. Chem 282, 28373–28378. PubMed

Zapletal D, Taborska E, Pasulka J, Malik R, Kubicek K, Zanova M, Much C, Sebesta M, Buccheri V, Horvat F, Jenickova I, Prochazkova M, Prochazka J., Pinkas M., Novacek J., Joseph DF., Sedlacek R., O’Carroll D., Stefl R., and Svoboda P. (2022). Molecular basis of indispensable accuracy of mammalian miRNA biogenesis. bioRxiv 2022.04.13.488181; doi: 10.1101/2022.04.13.488181. PubMed DOI PMC

Zhang H, Kolb FA, Jaskiewicz L, Westhof E, and Filipowicz W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68. PubMed

Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, and Gao S. (2022). Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Front Plant Sci 13, 844149. PubMed PMC

Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, and Agard DA (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332. PubMed PMC

Zhu L, Kandasamy SK, and Fukunaga R. (2018). Dicer partner protein tunes the length of miRNAs using base-mismatch in the pre-miRNA stem. Nucleic Acids Res. 46, 3726–3741. PubMed PMC

Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, and Scheres SH (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dicer structure and function: conserved and evolving features

. 2023 Jul 05 ; 24 (7) : e57215. [epub] 20230613

Structural and functional basis of mammalian microRNA biogenesis by Dicer

. 2022 Nov 03 ; 82 (21) : 4064-4079.e13.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...