Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 GM127094
NIGMS NIH HHS - United States
R35 GM136275
NIGMS NIH HHS - United States
ZIA ES050165
Intramural NIH HHS - United States
PubMed
36182693
PubMed Central
PMC9637774
DOI
10.1016/j.molcel.2022.09.002
PII: S1097-2765(22)00853-X
Knihovny.cz E-zdroje
- Klíčová slova
- Dcr-1, Dicer, Dicer-partner proteins, Loqs-PB, Loquacious, RNase III, cryo-EM, dsRBD, isomiR, miRNA, microRNA,
- MeSH
- Drosophila genetika MeSH
- mikro RNA * genetika metabolismus MeSH
- proteiny Drosophily * genetika metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- ribonukleasa III genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- mikro RNA * MeSH
- proteiny Drosophily * MeSH
- proteiny vázající RNA MeSH
- ribonukleasa III MeSH
In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs‑PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer‑1⋅Loqs‑PB heterodimer. The Dicer-1 dsRBD and three Loqs‑PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer‑1⋅Loqs‑PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.
Zobrazit více v PubMed
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, and Zwart PH (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221. PubMed PMC
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G., Eddy SR., Griffiths-Jones S., Marshall M., Matzke M., Ruvkun G., and Tuschl TS. (2003). A uniform system for microRNA annotation. RNA 9, 277–279. PubMed PMC
Baeyens KJ, De Bondt HL, and Holbrook SR (1995). Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat. Struct. Biol 2, 56–62. PubMed
Bartel DP (2018). Metazoan MicroRNAs. Cell 173, 20–51. PubMed PMC
Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, and Ji X. (2001). Crystallographic and Modeling Studies of RNase III Suggest a Mechanism for Double-Stranded RNA Cleavage. Structure 9, 1225–1236. PubMed
Brennecke J, Stark A, Russell RB, and Cohen SM (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85. PubMed PMC
Campbell FE, Cassano AG, Anderson VE, and Harris ME (2002). Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J. Mol. Biol 317, 21–40. PubMed
Cenik E, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall T, and Zamore P. (2011). Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease. Mol. Cell 42, 172–184. PubMed PMC
Chen S, Liu W, Naganuma M, Tomari Y, and Iwakawa HO (2022). Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. Nucleic Acids Res. gkac223. PubMed PMC
Chen VB., Arendall WB., Headd JJ., Keedy DA., Immormino RM., Kapral GJ., Murray LW., Richardson JS., and Richardson DC. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12–21. PubMed PMC
Chen X. (2009). Small RNAs and Their Roles in Plant Development. Annual Review of Cell and Developmental Biology 25, 21–44. PubMed PMC
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, and Shiekhattar R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744. PubMed PMC
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, and Bartel DP (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009. PubMed PMC
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, and Ji X. (2013). RNase III: Genetics and function; structure and mechanism. Annu. Rev. Genet 47, 405–431. PubMed PMC
Daniels SM, Melendez-Peña CE, Scarborough RJ, Daher A, Christensen HS, El Far M, Purcell DFJ, Lainé S, and Gatignol A. (2009). Characterization of the TRBP domain required for Dicer interaction and function in RNA interference. BMC Molecular Biology 10, 10.1186/1471-2199. PubMed DOI PMC
Denli AM, Tops BB, Plasterk RH, Ketting RF, and Hannon GJ (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235. PubMed
Dong Q, Hu B, and Zhang C. (2022). microRNAs and Their Roles in Plant Development. Front Plant Sci 13, 824240. PubMed PMC
JJ D. (1982). Ribonuclease III. In Volume15, PD B, ed. (New York: Academic Press; ), pp. 485–499.
Emsley P, Lohkamp B, Scott WG, and Cowtan K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501. PubMed PMC
Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., and Hassabis D. (2021). Protein complex prediction with AlphaFold-Multimer. bioRxiv 10.1101/2021.10.04.463034. DOI
Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, and Joo C. (2016). TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7, 13694. PubMed PMC
Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, and Zamore PD (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236. PubMed PMC
Förstemann K, Horwich MD, Wee L, Tomari Y, and Zamore PD (2007). Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1. Cell 130, 287–297. PubMed PMC
Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, and Zamore PD (2012). Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533–546. PubMed PMC
Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, and Ji X. (2008). A stepwise model for double-stranded RNA processing by ribonuclease III. Mol. Microbiol 67, 143–154. PubMed
Gleghorn ML, and Maquat LE (2014). ‘Black sheep’ that don’t leave the double-stranded RNA-binding domain fold. Trends Biochem. Sci 39, 328–340. PubMed PMC
Gregory RI., Yan KP., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., and Shiekhattar R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240. PubMed
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, and Mello CC (2001). Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell 106, 23–34. PubMed
Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, and Kay MA (2012). The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911. PubMed PMC
Gurtan AM, Lu V, Bhutkar A, and Sharp PA (2012). In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18, 1116–1122. PubMed PMC
Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A, and Filipowicz W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967. PubMed PMC
Han J, Lee Y, Yeom KH, Kim YK, Jin H, and Kim VN (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027. PubMed PMC
Han J., Lee Y., Yeom KH., Nam JW., Heo I., Rhee JK., Sohn SY., Cho Y., Zhang BT., and Ki VN. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901. PubMed
Hansen SR, Aderounmu AM, Donelick HM, and Bass BL (2019). Dicer’s Helicase Domain: A Meeting Place for Regulatory Proteins. Cold Spring Harb. Symp. Quant. Biol 84, 185–193. PubMed PMC
Holbrook SR, Cheong C, Tinoco I, and Kim SH (1991). Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature 353, 579–581. PubMed
Hubbard SJ, and Thornton JM (1993). naccess. Computer Program, Department of Biochemistry and Molecular Biology, University College London
Hutvágner G, McLachlan J, Pasquinelli AE, Balint É, Tuschl T, and Zamore PD (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838. PubMed
Jakob L, Treiber T, Treiber N, Gust A, Kramm K, Hansen K, Stotz M, Wankerl L, Herzog F, Hannus S, Grohmann D, and Meister G. (2016). Structural and functional insights into the fly microRNA biogenesis factor Loquacious. RNA 22, 383–396. PubMed PMC
Jiang F, Ye X, Liu X, Fincher L, McKearin D, and Liu Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679. PubMed PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, and Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. PubMed PMC
Kawamata T., Seitz H., and Tomari Y. (2009). Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol 16, 953–960. PubMed
Khvorova A, Reynolds A, and Jayasena SD (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216. PubMed
Knight SW, and Bass BL (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271. PubMed PMC
Kremer JR, Mastronarde DN, and McIntosh JR (1996). Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol 116, 71–76. PubMed
Kurzynska-Kokorniak A, Pokornowska M, Koralewska N, Hoffmann W, Bienkowska-Szewczyk K, and Figlerowicz M. (2016). Revealing a new activity of the human Dicer DUF283 domain in vitro. Scientific Reports 6, 23989. PubMed PMC
Kwon S, Nguyen T, Choi Y-G, Jo M, Hohng S, Kim V, and Woo J-S (2016). Structure of Human DROSHA. Cell 164, 81–90. PubMed
Lai EC (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet 30, 363–364. PubMed
Lau P-W, Potter CS, Carragher B, and MacRae IJ (2009). Structure of the Human Dicer-TRBP Complex by Electron Microscopy. Structure 17, 1326–1332. PubMed PMC
Lau PW, Guiley KZ, De N, Potter CS, Carragher B, and MacRae IJ (2012). The molecular architecture of human Dicer. Nat. Struct. Mol. Biol 19, 436–440. PubMed PMC
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, and Kim VN (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419. PubMed
Lee Y, Hur I, Park S-Y, Kim Y-K, Suh MR, and Kim VN (2006). The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532. PubMed PMC
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, and Burge CB (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798. PubMed
Lim MY., Ng AW., Chou Y., Lim TP., Simcox A., Tucker-Kellogg G., and Okamura K. (2016). The Drosophila Dicer-1 Partner Loquacious Enhances miRNA Processing from Hairpins with Unstable Structures at the Dicing Site. Cell Rep 15, 1795–1808. PubMed PMC
Lingel A, Simon B, Izaurralde E, and Sattler M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469. PubMed
Lingel A, Simon B, Izaurralde E, and Sattler M. (2004). Nucleic acid 3’-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol 11, 576–577. PubMed
Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, and Wang HW (2018). Cryo-EM Structure of Human Dicer and Its Complexes with a Pre-miRNA Substrate. Cell 173, 1191–1203.e12. PubMed
Luo QJ, Zhang J, Li P, Wang Q, Zhang Y, Roy-Chaudhuri B, Xu J, Kay MA, and Zhang QC (2021). RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat Commun 12, 3397. PubMed PMC
Ma JB, Ye K, and Patel DJ (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322. PubMed PMC
MacRae IJ, Zhou K, and Doudna JA (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol 14, 934–940. PubMed
Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, and Doudna JA (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198. PubMed
Maniataki E, and Mourelatos Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990. PubMed PMC
Mastronarde DN (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol 152, 36–51. PubMed
Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., and Tuschl T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197. PubMed
Meng W, and Nicholson AW (2008). Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem. J 410, 39–48. PubMed
Moore MJ, and Query CC (2000). Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123. PubMed
Moore MJ, and Sharp PA (1993). Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368. PubMed
Nicholson AW (2014). Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA 5, 31–48. PubMed PMC
Okamura K, Ishizuka A, Siomi H, and Siomi MC (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666. PubMed PMC
Ota H, Sakurai M, Gupta R, Valente L, Wulff B-E, Ariyoshi K, Iizasa H, Davuluri R., and Nishikura K. (2013). ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 153, 575–589. PubMed PMC
Park J-E, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, and Kim VN (2011). Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205. PubMed PMC
Partin AC, Zhang K, Jeong BC, Herrell E, Li S, Chiu W, and Nam Y. (2020). Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Mol. Cell 78, 411–422.e4. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, and Ferrin TE (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82. PubMed PMC
Provost P. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874. PubMed PMC
Punjani A, Zhang H, and Fleet DJ (2020). Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17, 1214–1221. PubMed
Qin H, Chen F, Huan X, Machida S, Song J, and Yuan YA (2010). Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16, 474–481. PubMed PMC
Rohou A, and Grigorieff N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol 192, 216–221. PubMed PMC
Saenger W. (1984). Chapter 6: Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking. In Principles of Nucleic Acid Structure, Springer; New York, NY: ), pp. 116–158.
Saito K, Ishizuka A, Siomi H, and Siomi MC (2005). Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235. PubMed PMC
Sassa A, Beard WA, Shock DD, and Wilson SH (2013). Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity. J Vis Exp e50695. PubMed PMC
Savir Y, and Tlusty T. (2007). Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS One 2, e468. PubMed PMC
Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, and Zamore PD (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208. PubMed
Sheng J, Larsen A, Heuberger BD, Blain JC, and Szostak JW (2014). Crystal structure studies of RNA duplexes containing s(2)U:A and s(2)U:U base pairs. J. Am. Chem. Soc 136, 13916–13924. PubMed PMC
Sinha NK, Iwasa J, Shen PS, and Bass BL (2018). Dicer uses distinct modules for recognizing dsRNA termini. Science 359, 329–334. PubMed PMC
Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, and Joshua-Tor L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol 10, 1026–1032. PubMed
Sun W, Pertzev A, and Nicholson AW (2005). Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res. 33, 807–815. PubMed PMC
Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, and Wang HW (2013). Substrate-specific structural rearrangements of human Dicer. Nat. Struct. Mol. Biol 20, 662–670. PubMed PMC
Tian Y., Simanshu DK., Ma JB., Park JE., Heo I., Kim VN., and Patel DJ. (2014). A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53, 606–616. PubMed PMC
Tomari Y, Du T, and Zamore PD (2007). Sorting of Drosophila small silencing RNAs. Cell 130, 299–308. PubMed PMC
Tsutsumi A, Kawamata T, Izumi N, Seitz H, and Tomari Y. (2011). Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat. Struct. Mol. Biol 18, 1153–1158. PubMed
Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, and Raunser S. (2019). SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2, 218. PubMed PMC
Wagner T, and Raunser S. (2020). The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows. Commun Biol 3, 61. PubMed PMC
Wang H-W, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, and Nogales E. (2009). Structural insights into RNA processing by the human RISC-loading complex. Nature Structural & Molecular Biology 16, 1148–1153. PubMed PMC
Wang Q., Xue Y., Zhang L., Zhong Z., Feng S., Wang C., Xiao L., Yang Z., Harris CJ., Wu Z., Zhai J., Yang M., Li S., Jacobsen SE., and Du J. (2021). Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 374, 1152–1157. PubMed PMC
Watkins AM, Rangan R, and Das R. (2020). FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure 28, 963–976.e6. PubMed PMC
Wei X, Ke H, Wen A, Gao B, Shi J, and Feng Y. (2021). Structural basis of microRNA processing by Dicer-like 1. Nat Plants 7, 1389–1396. PubMed
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, and Doudna JA (2015). Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell 57, 397–407. PubMed PMC
Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, and Turner DH (1998). Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson−Crick Base Pairs. Biochemistry 37, 14719–14735. PubMed
Yan KS, Yan S, Farooq A, Han A, Zeng L, and Zhou MM (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474. PubMed
Yang SW, Chen HY, Yang J, Machida S, Chua NH, and Yuan YA (2010). Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18, 594–605. PubMed PMC
Ye X, Paroo Z, and Liu Q. (2007). Functional anatomy of the Drosophila microRNA-generating enzyme. J. Biol. Chem 282, 28373–28378. PubMed
Zapletal D, Taborska E, Pasulka J, Malik R, Kubicek K, Zanova M, Much C, Sebesta M, Buccheri V, Horvat F, Jenickova I, Prochazkova M, Prochazka J., Pinkas M., Novacek J., Joseph DF., Sedlacek R., O’Carroll D., Stefl R., and Svoboda P. (2022). Molecular basis of indispensable accuracy of mammalian miRNA biogenesis. bioRxiv 2022.04.13.488181; doi: 10.1101/2022.04.13.488181. PubMed DOI PMC
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, and Filipowicz W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68. PubMed
Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, and Gao S. (2022). Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Front Plant Sci 13, 844149. PubMed PMC
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, and Agard DA (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332. PubMed PMC
Zhu L, Kandasamy SK, and Fukunaga R. (2018). Dicer partner protein tunes the length of miRNAs using base-mismatch in the pre-miRNA stem. Nucleic Acids Res. 46, 3726–3741. PubMed PMC
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, and Scheres SH (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166. PubMed PMC
Dicer structure and function: conserved and evolving features
Structural and functional basis of mammalian microRNA biogenesis by Dicer