Dicer structure and function: conserved and evolving features

. 2023 Jul 05 ; 24 (7) : e57215. [epub] 20230613

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37310138

Grantová podpora
20-03950X Czech Science Foundation
90140 Ministry of Education, Youth, and Sports of the Czech Republic

RNase III Dicer produces small RNAs guiding sequence-specific regulations, with important biological roles in eukaryotes. Major Dicer-dependent mechanisms are RNA interference (RNAi) and microRNA (miRNA) pathways, which employ distinct types of small RNAs. Small interfering RNAs (siRNAs) for RNAi are produced by Dicer from long double-stranded RNA (dsRNA) as a pool of different small RNAs. In contrast, miRNAs have specific sequences because they are precisely cleaved out from small hairpin precursors. Some Dicer homologs efficiently generate both, siRNAs and miRNAs, while others are adapted for biogenesis of one small RNA type. Here, we review the wealth of recent structural analyses of animal and plant Dicers, which have revealed how different domains and their adaptations contribute to substrate recognition and cleavage in different organisms and pathways. These data imply that siRNA generation was Dicer's ancestral role and that miRNA biogenesis relies on derived features. While the key element of functional divergence is a RIG-I-like helicase domain, Dicer-mediated small RNA biogenesis also documents the impressive functional versatility of the dsRNA-binding domain.

Zobrazit více v PubMed

Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL (2023) Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. Elife 12: e85120 PubMed PMC

Bartel DP (2018) Metazoan microRNAs. Cell 173: 20–51 PubMed PMC

Bass BL, Hurst SR, Singer JD (1994) Binding properties of newly identified Xenopus proteins containing dsRNA‐binding motifs. Curr Biol 4: 301–314 PubMed

Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366 PubMed

Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X (2004) Noncatalytic assembly of ribonuclease III with double‐stranded RNA. Structure 12: 457–466 PubMed

Boland A, Tritschler F, Heimstadt S, Izaurralde E, Weichenrieder O (2010) Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep 11: 522–527 PubMed PMC

Brate J, Neumann RS, Fromm B, Haraldsen AAB, Tarver JE, Suga H, Donoghue PCJ, Peterson KJ, Ruiz‐Trillo I, Grini PE et al (2018) Unicellular origin of the animal microRNA machinery. Curr Biol 28: 3288–3295.e5 PubMed PMC

Bycroft M, Grunert S, Murzin AG, Proctor M, St Johnston D (1995) NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N‐terminal domain of ribosomal protein S5. EMBO J 14: 3563–3571 PubMed PMC

Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD (2011) Phosphate and R2D2 restrict the substrate specificity of Dicer‐2, an ATP‐driven ribonuclease. Mol Cell 42: 172–184 PubMed PMC

Chen YG, Hur S (2022) Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 23: 286–301 PubMed PMC

Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8: 93–103 PubMed

Chen S, Liu W, Naganuma M, Tomari Y, Iwakawa HO (2022) Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. Nucleic Acids Res 50: 4669–4684 PubMed PMC

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740–744 PubMed PMC

Clavel M, Pelissier T, Montavon T, Tschopp MA, Pouch‐Pelissier MN, Descombin J, Jean V, Dunoyer P, Bousquet‐Antonelli C, Deragon JM (2016) Evolutionary history of double‐stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis. Plant Mol Biol 91: 131–147 PubMed

Colmenares SU, Buker SM, Buhler M, Dlakic M, Moazed D (2007) Coupling of double‐stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol Cell 27: 449–461 PubMed

Daniels SM, Melendez‐Pena CE, Scarborough RJ, Daher A, Christensen HS, El Far M, Purcell DF, Laine S, Gatignol A (2009) Characterization of the TRBP domain required for Dicer interaction and function in RNA interference. BMC Mol Biol 10: 38 PubMed PMC

Dlakic M (2006) DUF283 domain of Dicer proteins has a double‐stranded RNA‐binding fold. Bioinformatics 22: 2711–2714 PubMed

Doyle M, Jantsch MF (2002) New and old roles of the double‐stranded RNA‐binding domain. J Struct Biol 140: 147–153 PubMed

Doyle M, Badertscher L, Jaskiewicz L, Guttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W (2013) The double‐stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA 19: 1238–1252 PubMed PMC

Fierro‐Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 25: 241–246 PubMed

Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P (2013) A retrotransposon‐driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155: 807–816 PubMed

Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ‐line stem cell maintenance requires loquacious, a double‐stranded RNA‐binding domain protein. PLoS Biol 3: e236 PubMed PMC

Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5′‐nucleotide base‐specific recognition of guide RNA by human AGO2. Nature 465: 818–822 PubMed

Fukunaga R, Colpan C, Han BW, Zamore PD (2014) Inorganic phosphate blocks binding of pre‐miRNA to Dicer‐2 via its PAZ domain. EMBO J 33: 371–384 PubMed PMC

Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2006) Structural insight into the mechanism of double‐stranded RNA processing by ribonuclease III. Cell 124: 355–366 PubMed

Green SR, Mathews MB (1992) Two RNA‐binding motifs in the double‐stranded RNA‐activated protein kinase, DAI. Genes Dev 6: 2478–2490 PubMed

Guo X, Zhang R, Wang J, Ding SW, Lu R (2013) Homologous RIG‐I‐like helicase proteins direct RNAi‐mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci USA 110: 16085–16090 PubMed PMC

Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A, Filipowicz W (2005) TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6: 961–967 PubMed PMC

Hansen SR, Aderounmu AM, Donelick HM, Bass BL (2019) Dicer's helicase domain: a meeting place for regulatory proteins. Cold Spring Harb Symp Quant Biol 84: 185–193 PubMed PMC

Hartig JV, Forstemann K (2011) Loqs‐PD and R2D2 define independent pathways for RISC generation in Drosophila . Nucleic Acids Res 39: 3836–3851 PubMed PMC

Hartig JV, Esslinger S, Bottcher R, Saito K, Forstemann K (2009) Endo‐siRNAs depend on a new isoform of loquacious and target artificially introduced, high‐copy sequences. EMBO J 28: 2932–2944 PubMed PMC

Hinas A, Reimegard J, Wagner EG, Nellen W, Ambros VR, Soderbom F (2007) The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res 35: 6714–6726 PubMed PMC

Hur S (2019) Double‐stranded RNA sensors and modulators in innate immunity. Annu Rev Immunol 37: 349–375 PubMed PMC

Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320: 77–97 PubMed

Jayachandran U, Grey H, Cook AG (2016) Nuclear factor 90 uses an ADAR2‐like binding mode to recognize specific bases in dsRNA. Nucleic Acids Res 44: 1924–1936 PubMed PMC

Jia H, Kolaczkowski O, Rolland J, Kolaczkowski B (2017) Increased affinity for RNA targets evolved early in animal and plant Dicer lineages through different structural mechanisms. Mol Biol Evol 34: 3047–3063 PubMed PMC

Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q (2005) Dicer‐1 and R3D1‐L catalyze microRNA maturation in Drosophila . Genes Dev 19: 1674–1679 PubMed PMC

Jouravleva K, Golovenko D, Demo G, Dutcher RC, Hall TMT, Zamore PD, Korostelev AA (2022) Structural basis of microRNA biogenesis by Dicer‐1 and its partner protein Loqs‐PB. Mol Cell 82: 4049–4063.e6 PubMed PMC

Kandasamy SK, Fukunaga R (2016) Phosphate‐binding pocket in Dicer‐2 PAZ domain for high‐fidelity siRNA production. Proc Natl Acad Sci USA 113: 14031–14036 PubMed PMC

Ketting RF (2011) The many faces of RNAi. Dev Cell 20: 148–161 PubMed

Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans . Genes Dev 15: 2654–2659 PubMed PMC

Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A (1995) Structure of the dsRNA binding domain of E. coli RNase III. EMBO J 14: 3572–3584 PubMed PMC

Kidwell MA, Chan JM, Doudna JA (2014) Evolutionarily conserved roles of the Dicer helicase domain in regulating RNA interference processing. J Biol Chem 289: 28352–28362 PubMed PMC

Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S (2011) Structural basis for the activation of innate immune pattern‐recognition receptor RIG‐I by viral RNA. Cell 147: 423–435 PubMed

Kozomara A, Birgaoanu M, Griffiths‐Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47: D155–D162 PubMed PMC

Kruse J, Meier D, Zenk F, Rehders M, Nellen W, Hammann C (2016) The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation. RNA Biol 13: 1000–1010 PubMed PMC

Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS (2016) Structure of human DROSHA. Cell 164: 81–90 PubMed

Laraki G, Clerzius G, Daher A, Melendez‐Pena C, Daniels S, Gatignol A (2008) Interactions between the double‐stranded RNA‐binding proteins TRBP and PACT define the Medipal domain that mediates protein‐protein interactions. RNA Biol 5: 92–103 PubMed

Lau PW, Potter CS, Carragher B, MacRae IJ (2009) Structure of the human Dicer‐TRBP complex by electron microscopy. Structure 17: 1326–1332 PubMed PMC

Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19: 436–440 PubMed PMC

Lazzaretti D, Bandholz‐Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F (2018) The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci Alliance 1: e201800187 PubMed PMC

Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25: 522–532 PubMed PMC

Lee YY, Kim H, Kim VN (2023a) Sequence determinant of small RNA production by DICER. Nature 615: 323–330 PubMed

Lee YY, Lee H, Kim H, Kim VN, Roh SH (2023b) Structure of the human DICER‐pre‐miRNA complex in a dicing state. Nature 615: 331–338 PubMed

Lehmann KA, Bass BL (1999) The importance of internal loops within RNA substrates of ADAR1. J Mol Biol 291: 1–13 PubMed

Liao Z, Kjellin J, Hoeppner MP, Grabherr M, Soderbom F (2018) Global characterization of the dicer‐like protein DrnB roles in miRNA biogenesis in the social amoeba Dictyostelium discoideum . RNA Biol 15: 937–954 PubMed PMC

Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic‐acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426: 465–469 PubMed

Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3′‐end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11: 576–577 PubMed

Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921–1925 PubMed

Liu JD, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua‐Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441 PubMed

Liu C, Axtell MJ, Fedoroff NV (2012) The helicase and RNaseIIIa domains of Arabidopsis Dicer‐Like1 modulate catalytic parameters during microRNA biogenesis. Plant Physiol 159: 748–758 PubMed PMC

Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, Wang HW (2018) Cryo‐EM structure of human Dicer and its complexes with a pre‐miRNA substrate. Cell 173: 1191–1203.e12 PubMed

Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang‐specific small interfering RNA recognition by the PAZ domain. Nature 429: 318–322 PubMed PMC

Ma E, MacRae IJ, Kirsch JF, Doudna JA (2008) Autoinhibition of human Dicer by its internal helicase domain. J Mol Biol 380: 237–243 PubMed PMC

MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17: 138–145 PubMed

MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double‐stranded RNA processing by Dicer. Science 311: 195–198 PubMed

MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14: 934–940 PubMed

Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW (2010) Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila . Nat Struct Mol Biol 17: 24–30 PubMed PMC

Masliah G, Maris C, Konig SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J et al (2018) Structural basis of siRNA recognition by TRBP double‐stranded RNA binding domains. EMBO J 37: e97089 PubMed PMC

Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (2012) MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi . BMC Genomics 13: 714 PubMed PMC

Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14: 447–459 PubMed

Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185–197 PubMed

Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23: 34–45 PubMed PMC

Moran Y, Praher D, Fredman D, Technau U (2013) The evolution of microRNA pathway protein components in Cnidaria. Mol Biol Evol 30: 2541–2552 PubMed PMC

Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101: 533–542 PubMed

Mukherjee K, Campos H, Kolaczkowski B (2013) Evolution of animal and plant Dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol Biol Evol 30: 627–641 PubMed PMC

Naganuma M, Tadakuma H, Tomari Y (2021) Single‐molecule analysis of processive double‐stranded RNA cleavage by Drosophila Dicer‐2. Nat Commun 12: 4268 PubMed PMC

Nanduri S, Carpick BW, Yang Y, Williams BR, Qin J (1998) Structure of the double‐stranded RNA‐binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA‐mediated activation. EMBO J 17: 5458–5465 PubMed PMC

Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107: 309–321 PubMed

Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475: 201–205 PubMed PMC

Parker GS, Eckert DM, Bass BL (2006) RDE‐4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA. RNA 12: 807–818 PubMed PMC

Parker GS, Maity TS, Bass BL (2008) dsRNA binding properties of RDE‐4 and TRBP reflect their distinct roles in RNAi. J Mol Biol 384: 967–979 PubMed PMC

Paturi S, Deshmukh MV (2021) A glimpse of “Dicer biology” through the structural and functional perspective. Front Mol Biosci 8: 643657 PubMed PMC

Ramos A, Grunert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, St Johnston D, Varani G (2000) RNA recognition by a Staufen double‐stranded RNA‐binding domain. EMBO J 19: 997–1009 PubMed PMC

Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25: 2383–2399 PubMed PMC

Ryter JM, Schultz SC (1998) Molecular basis of double‐stranded RNA‐protein interactions: structure of a dsRNA‐binding domain complexed with dsRNA. EMBO J 17: 7505–7513 PubMed PMC

Sasaki T, Shimizu N (2007) Evolutionary conservation of a unique amino acid sequence in human DICER protein essential for binding to Argonaute family proteins. Gene 396: 312–320 PubMed

Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS (2023) Ancient gene linkages support ctenophores as sister to other animals. Nature 618: 110–117 PubMed PMC

Singh RK, Jonely M, Leslie E, Rejali NA, Noriega R, Bass BL (2021) Transient kinetic studies of the antiviral Drosophila Dicer‐2 reveal roles of ATP in self‐nonself discrimination. Elife 10: e65810 PubMed PMC

Sinha NK, Trettin KD, Aruscavage PJ, Bass BL (2015) Drosophila Dicer‐2 cleavage is mediated by helicase‐ and dsRNA termini‐dependent states that are modulated by loquacious‐PD. Mol Cell 58: 406–417 PubMed PMC

Sinha NK, Iwasa J, Shen PS, Bass BL (2018) Dicer uses distinct modules for recognizing dsRNA termini. Science 359: 329–334 PubMed PMC

Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua‐Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10: 1026–1032 PubMed

St Johnston D, Brown NH, Gall JG, Jantsch M (1992) A conserved double‐stranded RNA‐binding domain. Proc Natl Acad Sci USA 89: 10979–10983 PubMed PMC

Stefl R, Skrisovska L, Allain FH (2005) RNA sequence‐ and shape‐dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6: 33–38 PubMed PMC

Stefl R, Xu M, Skrisovska L, Emeson RB, Allain FH (2006) Structure and specific RNA binding of ADAR2 double‐stranded RNA binding motifs. Structure 14: 345–355 PubMed

Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB et al (2010) The solution structure of the ADAR2 dsRBM‐RNA complex reveals a sequence‐specific readout of the minor groove. Cell 143: 225–237 PubMed PMC

Su S, Wang J, Deng T, Yuan X, He J, Liu N, Li X, Huang Y, Wang HW, Ma J (2022) Structural insights into dsRNA processing by Drosophila Dicer‐2‐Loqs‐PD. Nature 607: 399–406 PubMed PMC

Svoboda P, Di Cara A (2006) Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci 63: 901–918 PubMed PMC

Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde‐1 gene, RNA interference, and transposon silencing in C. elegans . Cell 99: 123–132 PubMed

Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE‐4 interacts with RDE‐1, DCR‐1, and a DExH‐box helicase to direct RNAi in C. elegans . Cell 109: 861–871 PubMed

Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, Wang HW (2013) Substrate‐specific structural rearrangements of human Dicer. Nat Struct Mol Biol 20: 662–670 PubMed PMC

Tian Y, Simanshu DK, Ma JB, Park JE, Heo I, Kim VN, Patel DJ (2014) A phosphate‐binding pocket within the platform‐PAZ‐connector helix cassette of human Dicer. Mol Cell 53: 606–616 PubMed PMC

Tsutsumi A, Kawamata T, Izumi N, Seitz H, Tomari Y (2011) Recognition of the pre‐miRNA structure by Drosophila Dicer‐1. Nat Struct Mol Biol 18: 1153–1158 PubMed

Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang XH, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23: 1749–1762 PubMed PMC

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res 50: D439–D444 PubMed PMC

Vetukuri RR, Avrova AO, Grenville‐Briggs LJ, Van West P, Soderbom F, Savenkov EI, Whisson SC, Dixelius C (2011) Evidence for involvement of dicer‐like, Argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans . Mol Plant Pathol 12: 772–785 PubMed PMC

Vlok M, Lang AS, Suttle CA (2019) Marine RNA virus Quasispecies are distributed throughout the oceans. mSphere 4: e00157‐19 PubMed PMC

Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E (2009) Structural insights into RNA processing by the human RISC‐loading complex. Nat Struct Mol Biol 16: 1148–1153 PubMed PMC

Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J (2011) Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 19: 999–1010 PubMed PMC

Wang Q, Xue Y, Zhang L, Zhong Z, Feng S, Wang C, Xiao L, Yang Z, Harris CJ, Wu Z et al (2021) Mechanism of siRNA production by a plant Dicer‐RNA complex in dicing‐competent conformation. Science 374: 1152–1157 PubMed PMC

Wei X, Ke H, Wen A, Gao B, Shi J, Feng Y (2021) Structural basis of microRNA processing by Dicer‐like 1. Nat Plants 7: 1389–1396 PubMed

Weinberg DE, Nakanishi K, Patel DJ, Bartel DP (2011) The inside‐out mechanism of Dicers from budding yeasts. Cell 146: 262–276 PubMed PMC

Welker NC, Maity TS, Ye X, Aruscavage PJ, Krauchuk AA, Liu Q, Bass BL (2011) Dicer's helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell 41: 589–599 PubMed PMC

Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA (2015) Dicer‐TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 57: 397–407 PubMed PMC

Wolf YI, Silas S, Wang Y, Wu S, Bocek M, Kazlauskas D, Krupovic M, Fire A, Dolja VV, Koonin EV (2020) Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat Microbiol 5: 1262–1270 PubMed PMC

Yadav DK, Zigackova D, Zlobina M, Klumpler T, Beaumont C, Kubickova M, Vanacova S, Lukavsky PJ (2020) Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res 48: 2091–2106 PubMed PMC

Yamaguchi S, Naganuma M, Nishizawa T, Kusakizako T, Tomari Y, Nishimasu H, Nureki O (2022) Structure of the Dicer‐2‐R2D2 heterodimer bound to a small RNA duplex. Nature 607: 393–398 PubMed PMC

Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426: 468–474 PubMed

Yoneyama M, Fujita T (2007) RIG‐I family RNA helicases: cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor Rev 18: 545–551 PubMed

Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double‐stranded RNA directs the ATP‐dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25–33 PubMed

Zapletal D, Taborska E, Pasulka J, Malik R, Kubicek K, Zanova M, Much C, Sebesta M, Buccheri V, Horvat F et al (2022) Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol Cell 82: e4013 PubMed PMC

Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21: 5875–5885 PubMed PMC

Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118: 57–68 PubMed

Zhou R, Czech B, Brennecke J, Sachidanandam R, Wohlschlegel JA, Perrimon N, Hannon GJ (2009) Processing of Drosophila endo‐siRNAs depends on a specific loquacious isoform. RNA 15: 1886–1895 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...