Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-03950X
Czech Science Foundation
647403
EC | European Research Council (ERC)
LO1419
Ministry of Education, Youth, and Sports of the Czech Republic
LM2018126
Ministry of Education, Youth, and Sports of the Czech Republic
LM2023036
Ministry of Education, Youth, and Sports of the Czech Republic
LM2023050
Ministry of Education, Youth, and Sports of the Czech Republic
90254
Ministry of Education, Youth, and Sports of the Czech Republic
90255
Ministry of Education, Youth, and Sports of the Czech Republic
PhD fellowship
Charles University
RVO 68378050
Czech Academy of Sciences
PubMed
38769420
PubMed Central
PMC11239679
DOI
10.1038/s44319-024-00148-z
PII: 10.1038/s44319-024-00148-z
Knihovny.cz E-zdroje
- Klíčová slova
- Dicer, Mirtron, PKR, dsRNA, siRNA,
- MeSH
- DEAD-box RNA-helikasy genetika metabolismus MeSH
- dvouvláknová RNA * metabolismus genetika MeSH
- malá interferující RNA * genetika metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- myši MeSH
- protein - isoformy genetika metabolismus MeSH
- ribonukleasa III * genetika metabolismus MeSH
- RNA interference * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- Dicer1 protein, mouse MeSH Prohlížeč
- dvouvláknová RNA * MeSH
- malá interferující RNA * MeSH
- mikro RNA MeSH
- protein - isoformy MeSH
- ribonukleasa III * MeSH
Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.
Zobrazit více v PubMed
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. Elife. 2023;12:e85120. doi: 10.7554/eLife.85120. PubMed DOI PMC
Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007;28:328–336. doi: 10.1016/j.molcel.2007.09.028. PubMed DOI PMC
Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014;56:347–359. doi: 10.1016/j.molcel.2014.09.018. PubMed DOI PMC
Chalupnikova K, Solc P, Sulimenko V, Sedlacek R, Svoboda P. An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes. Cell Cycle. 2014;13:1187–1200. doi: 10.4161/cc.28107. PubMed DOI PMC
Danner J, Pai B, Wankerl L, Meister G. Peptide-based inhibition of miRNA-guided gene silencing. Methods Mol Biol. 2017;1517:199–210. doi: 10.1007/978-1-4939-6563-2_14. PubMed DOI
de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Grosshans H. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 2015;16:500–511. doi: 10.15252/embr.201540078. PubMed DOI PMC
Demeter T, Vaskovicova M, Malik R, Horvat F, Pasulka J, Svobodova E, Flemr M, Svoboda P. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance. 2019;2:e201800289. doi: 10.26508/lsa.201800289. PubMed DOI PMC
Diallo M, Arenz C, Schmitz K, Sandhoff K, Schepers U. Long endogenous dsRNAs can induce complete gene silencing in mammalian cells and primary cultures. Oligonucleotides. 2003;13:381–392. doi: 10.1089/154545703322617069. PubMed DOI
Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev. 2003;17:438–442. doi: 10.1101/gad.1064703. PubMed DOI PMC
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. PubMed DOI
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P. A retrotransposon-driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155:807–816. doi: 10.1016/j.cell.2013.10.001. PubMed DOI
Flemr M, Moravec M, Libova V, Sedlacek R, Svoboda P. Lin28a is dormant, functional, and dispensable during mouse oocyte-to-embryo transition. Biol Reprod. 2014;90:131. doi: 10.1095/biolreprod.114.118703. PubMed DOI
Franke V, Ganesh S, Karlic R, Malik R, Pasulka J, Horvat F, Kuzman M, Fulka H, Cernohorska M, Urbanova J, et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017;27:1384–1394. doi: 10.1101/gr.216150.116. PubMed DOI PMC
Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–D773. doi: 10.1093/nar/gky955. PubMed DOI PMC
Gan L, Anton KE, Masterson BA, Vincent VA, Ye S, Gonzalez-Zulueta M. Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods. 2002;121:151–157. doi: 10.1016/S0165-0270(02)00230-3. PubMed DOI
Gurung C, Fendereski M, Sapkota K, Guo J, Huang F, Guo YL. Dicer represses the interferon response and the double-stranded RNA-activated protein kinase pathway in mouse embryonic stem cells. J Biol Chem. 2021;296:100264. doi: 10.1016/j.jbc.2021.100264. PubMed DOI PMC
Hampf M, Gossen M. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays. Anal Biochem. 2006;356:94–99. doi: 10.1016/j.ab.2006.04.046. PubMed DOI
Han J, LaVigne CA, Jones BT, Zhang H, Gillett F, Mendell JT. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science. 2020;370:eabc9546. doi: 10.1126/science.abc9546. PubMed DOI PMC
Isakova A, Fehlmann T, Keller A, Quake SR. A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci USA. 2020;117:25634–25645. doi: 10.1073/pnas.2002277117. PubMed DOI PMC
Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–1187. doi: 10.1261/rna.25706. PubMed DOI PMC
Kaname T, Huxley C. Simple and efficient vectors for retrofitting BACs and PACs with mammalian neoR and EGFP marker genes. Gene. 2001;266:147–153. doi: 10.1016/S0378-1119(01)00375-4. PubMed DOI
Karlic R, Ganesh S, Franke V, Svobodova E, Urbanova J, Suzuki Y, Aoki F, Vlahovicek K, Svoboda P. Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. DNA Res. 2017;24:129–141. doi: 10.1093/dnares/dsx008. PubMed DOI PMC
Kataruka S, Modrak M, Kinterova V, Malik R, Zeitler DM, Horvat F, Kanka J, Meister G, Svoboda P. MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res. 2020;48:8050–8062. doi: 10.1093/nar/gkaa543. PubMed DOI PMC
Ketting RF. The many faces of RNAi. Dev Cell. 2011;20:148–161. doi: 10.1016/j.devcel.2011.01.012. PubMed DOI
Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15:2654–2659. doi: 10.1101/gad.927801. PubMed DOI PMC
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Ladewig E, Okamura K, Flynt AS, Westholm JO, Lai EC. Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res. 2012;22:1634–1645. doi: 10.1101/gr.133553.111. PubMed DOI PMC
Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117:69–81. doi: 10.1016/S0092-8674(04)00261-2. PubMed DOI
Li Y, Lu J, Han Y, Fan X, Ding SW. RNA interference functions as an antiviral immunity mechanism in mammals. Science. 2013;342:231–234. doi: 10.1126/science.1241911. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, Wang HW. Cryo-EM structure of human Dicer and its complexes with a Pre-miRNA substrate. Cell. 2018;173:1191–1203.e1112. doi: 10.1016/j.cell.2018.03.080. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ma E, MacRae IJ, Kirsch JF, Doudna JA. Autoinhibition of human dicer by its internal helicase domain. J Mol Biol. 2008;380:237–243. doi: 10.1016/j.jmb.2008.05.005. PubMed DOI PMC
Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM. MicroRNA activity is suppressed in mouse oocytes. Curr Biol. 2010;20:265–270. doi: 10.1016/j.cub.2009.12.042. PubMed DOI PMC
Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. Antiviral RNA interference in mammalian cells. Science. 2013;342:235–238. doi: 10.1126/science.1241930. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 2011;17:3.
Meng Z, Zhang X, Wu J, Pei R, Xu Y, Yang D, Roggendorf M, Lu M. RNAi induces innate immunity through multiple cellular signaling pathways. PLoS One. 2013;8:e64708. doi: 10.1371/journal.pone.0064708. PubMed DOI PMC
Montavon TC, Baldaccini M, Lefevre M, Girardi E, Chane-Woon-Ming B, Messmer M, Hammann P, Chicher J, Pfeffer S. Human DICER helicase domain recruits PKR and modulates its antiviral activity. PLoS Pathog. 2021;17:e1009549. doi: 10.1371/journal.ppat.1009549. PubMed DOI PMC
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev. 2007;21:682–693. doi: 10.1101/gad.1521307. PubMed DOI PMC
Nejepinska J, Malik R, Filkowski J, Flemr M, Filipowicz W, Svoboda P. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res. 2012;40:399–413. doi: 10.1093/nar/gkr702. PubMed DOI PMC
Nejepinska J, Malik R, Wagner S, Svoboda P. Reporters transiently transfected into mammalian cells are highly sensitive to translational repression induced by dsRNA expression. PLoS ONE. 2014;9:e87517. doi: 10.1371/journal.pone.0087517. PubMed DOI PMC
Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–319. doi: 10.1016/S0014-5793(97)00313-X. PubMed DOI
Poirier EZ, Buck MD, Chakravarty P, Carvalho J, Frederico B, Cardoso A, Healy L, Ulferts R, Beale R, Reis e Sousa C. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science. 2021;373:231–236. doi: 10.1126/science.abg2264. PubMed DOI PMC
Seo GJ, Kincaid RP, Phanaksri T, Burke JM, Pare JM, Cox JE, Hsiang TY, Krug RM, Sullivan CS. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe. 2013;14:435–445. doi: 10.1016/j.chom.2013.09.002. PubMed DOI PMC
Shi CY, Kingston ER, Kleaveland B, Lin DH, Stubna MW, Bartel DP. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science. 2020;370:eabc9359. doi: 10.1126/science.abc9359. PubMed DOI PMC
Shinagawa T, Ishii S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 2003;17:1340–1345. doi: 10.1101/gad.1073003. PubMed DOI PMC
Sollner JF, Leparc G, Hildebrandt T, Klein H, Thomas L, Stupka E, Simon E. An RNA-Seq atlas of gene expression in mouse and rat normal tissues. Sci Data. 2017;4:170185. doi: 10.1038/sdata.2017.185. PubMed DOI PMC
Stein P, Svoboda P, Schultz RM. Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol. 2003;256:187–193. doi: 10.1016/S0012-1606(02)00122-7. PubMed DOI
Stein P, Zeng F, Pan H, Schultz RM. Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol. 2005;286:464–471. doi: 10.1016/j.ydbio.2005.08.015. PubMed DOI
Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol. 2010;20:271–277. doi: 10.1016/j.cub.2009.12.044. PubMed DOI PMC
Taborska E, Pasulka J, Malik R, Horvat F, Jenickova I, Jelic Matosevic Z, Svoboda P. Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet. 2019;15:e1008261. doi: 10.1371/journal.pgen.1008261. PubMed DOI PMC
Takahashi T, Nakano Y, Onomoto K, Yoneyama M, Ui-Tei K. Virus sensor RIG-I represses RNA interference by interacting with TRBP through LGP2 in mammalian cells. Genes. 2018;9:511. doi: 10.3390/genes9100511. PubMed DOI PMC
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453:534–538. doi: 10.1038/nature06904. PubMed DOI PMC
Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–648. doi: 10.1101/gad.418707. PubMed DOI PMC
Tchorz JS, Suply T, Ksiazek I, Giachino C, Cloetta D, Danzer CP, Doll T, Isken A, Lemaistre M, Taylor V, et al. A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters. PLoS ONE. 2012;7:e30011. doi: 10.1371/journal.pone.0030011. PubMed DOI PMC
Terenzi F, deVeer MJ, Ying H, Restifo NP, Williams BR, Silverman RH. The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res. 1999;27:4369–4375. doi: 10.1093/nar/27.22.4369. PubMed DOI PMC
Toni LS, Garcia AM, Jeffrey DA, Jiang X, Stauffer BL, Miyamoto SD, Sucharov CC. Optimization of phenol-chloroform RNA extraction. MethodsX. 2018;5:599–608. doi: 10.1016/j.mex.2018.05.011. PubMed DOI PMC
Tran N, Raponi M, Dawes IW, Arndt GM. Control of specific gene expression in mammalian cells by co-expression of long complementary RNAs. FEBS Lett. 2004;573:127–134. doi: 10.1016/j.febslet.2004.07.075. PubMed DOI
van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjaer S, Snijders AP, Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 2018;37:e97479. doi: 10.15252/embj.201797479. PubMed DOI PMC
Watanabe T, Cheng EC, Zhong M, Lin HF. Retrotransposons and pseudogenes regulate mRNAs and IncRNAs via the piRNA pathway in the germline. Genome Res. 2015;25:368–380. doi: 10.1101/gr.180802.114. PubMed DOI PMC
Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453:539–543. doi: 10.1038/nature06908. PubMed DOI
Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie. 2011;93:1897–1904. doi: 10.1016/j.biochi.2011.06.017. PubMed DOI PMC
Yang YL, Reis LF, Pavlovic J, Aguzzi A, Schafer R, Kumar A, Williams BR, Aguet M, Weissmann C. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 1995;14:6095–6106. doi: 10.1002/j.1460-2075.1995.tb00300.x. PubMed DOI PMC
Yi CE, Bekker JM, Miller G, Hill KL, Crosbie RH. Specific and potent RNA interference in terminally differentiated myotubes. J Biol Chem. 2003;278:934–939. doi: 10.1074/jbc.M205946200. PubMed DOI
Zapletal D, Kubicek K, Svoboda P, Stefl R. Dicer structure and function: conserved and evolving features. EMBO Rep. 2023;24:e57215. doi: 10.15252/embr.202357215. PubMed DOI PMC
Zapletal D, Taborska E, Pasulka J, Malik R, Kubicek K, Zanova M, Much C, Sebesta M, Buccheri V, Horvat F, et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol Cell. 2022;82:4064–4079.e4013. doi: 10.1016/j.molcel.2022.10.010. PubMed DOI PMC
Enhanced RNAi does not provide efficient innate antiviral immunity in mice