Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31875226
PubMed Central
PMC7038937
DOI
10.1093/nar/gkz1163
PII: 5686796
Knihovny.cz E-zdroje
- MeSH
- ADP-ribosylační faktor 1 chemie genetika MeSH
- cytoplazma chemie genetika MeSH
- cytoskeletální proteiny chemie genetika MeSH
- dvouvláknová RNA chemie genetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- proteiny vázající RNA chemie genetika MeSH
- stabilita RNA genetika MeSH
- vazebná místa genetika MeSH
- vazebný motiv pro dvoušroubovici RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADP-ribosylační faktor 1 MeSH
- cytoskeletální proteiny MeSH
- dvouvláknová RNA MeSH
- proteiny vázající RNA MeSH
- STAU1 protein, human MeSH Prohlížeč
Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3'UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS-STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the β1-β2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
Zobrazit více v PubMed
Heraud-Farlow J.E., Kiebler M.A.. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci. 2014; 37:470–479. PubMed PMC
St Johnston D., Beuchle D., Nusslein-Volhard C.. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell. 1991; 66:51–63. PubMed
Ephrussi A., Dickinson L.K., Lehmann R.. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell. 1991; 66:37–50. PubMed
Ferrandon D., Elphick L., Nusslein-Volhard C., St Johnston D.. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell. 1994; 79:1221–1232. PubMed
St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995; 81:161–170. PubMed
Wickham L., Duchaine T., Luo M., Nabi I.R., DesGroseillers L.. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol. Cell Biol. 1999; 19:2220–2230. PubMed PMC
Monshausen M., Putz U., Rehbein M., Schweizer M., DesGroseillers L., Kuhl D., Richter D., Kindler S.. Two rat brain staufen isoforms differentially bind RNA. J. Neurochem. 2001; 76:155–165. PubMed
Duchaine T.F., Hemraj I., Furic L., Deitinghoff A., Kiebler M.A., DesGroseillers L.. Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. J. Cell Sci. 2002; 115:3285–3295. PubMed
Ramos A., Grunert S., Adams J., Micklem D.R., Proctor M.R., Freund S., Bycroft M., St Johnston D., Varani G.. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 2000; 19:997–1009. PubMed PMC
Martel C., Dugre-Brisson S., Boulay K., Breton B., Lapointe G., Armando S., Trepanier V., Duchaine T., Bouvier M., Desgroseillers L.. Multimerization of Staufen1 in live cells. RNA. 2010; 16:585–597. PubMed PMC
Gleghorn M.L., Gong C., Kielkopf C.L., Maquat L.E.. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nat. Struct. Mol. Biol. 2013; 20:515–524. PubMed PMC
Luo M., Duchaine T.F., DesGroseillers L.. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem. J. 2002; 365:817–824. PubMed PMC
Ravel-Chapuis A., Belanger G., Yadava R.S., Mahadevan M.S., DesGroseillers L., Cote J., Jasmin B.J.. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J. Cell Biol. 2012; 196:699–712. PubMed PMC
Elbarbary R.A., Li W., Tian B., Maquat L.E.. STAU1 binding 3′UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev. 2013; 27:1495–1510. PubMed PMC
Furic L., Maher-Laporte M., DesGroseillers L.. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA. 2008; 14:324–335. PubMed PMC
Heraud-Farlow J.E., Sharangdhar T., Li X., Pfeifer P., Tauber S., Orozco D., Hormann A., Thomas S., Bakosova A., Farlow A.R. et al. .. Staufen2 regulates neuronal target RNAs. Cell Rep. 2013; 5:1511–1518. PubMed
Laver J.D., Li X., Ancevicius K., Westwood J.T., Smibert C.A., Morris Q.D., Lipshitz H.D.. Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity. Nucleic Acids Res. 2013; 41:9438–9460. PubMed PMC
de Lucas S., Oliveros J.C., Chagoyen M., Ortin J.. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. Nucleic Acids Res. 2014; 42:4516–4526. PubMed PMC
Ricci E.P., Kucukural A., Cenik C., Mercier B.C., Singh G., Heyer E.E., Ashar-Patel A., Peng L., Moore M.J.. Staufen1 senses overall transcript secondary structure to regulate translation. Nat. Struct. Mol. Biol. 2014; 21:26–35. PubMed PMC
Sugimoto Y., Vigilante A., Darbo E., Zirra A., Militti C., D’Ambrogio A., Luscombe N.M., Ule J.. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature. 2015; 519:491–494. PubMed PMC
Popp M.W., Maquat L.E.. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 2013; 47:139–165. PubMed PMC
Park E., Maquat L.E.. Staufen-mediated mRNA decay. Wiley Interdiscip. Rev. RNA. 2013; 4:423–435. PubMed PMC
Kim Y.K., Furic L., Desgroseillers L., Maquat L.E.. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell. 2005; 120:195–208. PubMed
Kim Y.K., Furic L., Parisien M., Major F., DesGroseillers L., Maquat L.E.. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J. 2007; 26:2670–2681. PubMed PMC
Gong C., Maquat L.E.. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′UTRs via Alu elements. Nature. 2011; 470:284–288. PubMed PMC
Gong C., Tang Y., Maquat L.E.. mRNA-mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 2013; 20:1214–1220. PubMed PMC
Lazzaretti D., Bandholz-Cajamarca L., Emmerich C., Schaaf K., Basquin C., Irion U., Bono F.. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci. Alliance. 2018; 1:e201800187. PubMed PMC
Elantak L., Wagner S., Herrmannova A., Karaskova M., Rutkai E., Lukavsky P.J., Valasek L.. The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection. J. Mol. Biol. 2010; 396:1097–1116. PubMed PMC
Liu H.T., Naismith J.H.. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008; 8:91. PubMed PMC
Chen I., Dorr B.M., Liu D.R.. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:11399–11404. PubMed PMC
Freiburger L., Sonntag M., Hennig J., Li J., Zou P., Sattler M.. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J. Biomol. NMR. 2015; 63:1–8. PubMed
Lukavsky P.J., Puglisi J.D.. Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA. 2004; 10:889–893. PubMed PMC
Easton L.E., Shibata Y., Lukavsky P.J.. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA. 2010; 16:647–653. PubMed PMC
Zlobina M., Sedo O., Chou M.Y., Slepankova L., Lukavsky P.J.. Efficient large-scale preparation and purification of short single-stranded RNA oligonucleotides. Biotechniques. 2016; 60:75–83. PubMed
Ryder S.P., Recht M.I., Williamson J.R.. Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol. Biol. 2008; 488:99–115. PubMed PMC
Sattler M., Schleucher J., Griesinger C.. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Mag. Res. Spectrosc. 1999; 34:93–158.
Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A.. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 1995; 6:277–293. PubMed
Kazimierczuk K., Zawadzka A., Kozminski W.. Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 2008; 192:123–130. PubMed
Stanek J., Kozminski W.. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J. Biomol. NMR. 2010; 47:65–77. PubMed
Lukavsky P.J., Puglisi J.D.. RNAPack: an integrated NMR approach to RNA structure determination. Methods. 2001; 25:316–332. PubMed
Peterson R.D., Theimer C.A., Wu H., Feigon J.. New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J. Biomol. NMR. 2004; 28:59–67. PubMed
Lee W., Revington M.J., Arrowsmith C., Kay L.E.. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 1994; 350:87–90. PubMed
Herrmann T., Guntert P., Wuthrich K.. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR. 2002; 24:171–189. PubMed
Herrmann T., Guntert P., Wuthrich K.. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 2002; 319:209–227. PubMed
Case D.A., Cheatham T.E. 3rd, Darden T., Gohlke H., Luo R., Merz K.M. Jr, Onufriev A., Simmerling C., Wang B., Woods R.J.. The Amber biomolecular simulation programs. J. Comput. Chem. 2005; 26:1668–1688. PubMed PMC
Laskowski R.A., Rullmannn J.A., MacArthur M.W., Kaptein R., Thornton J.M.. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR. 1996; 8:477–486. PubMed
Pollard T.D. A guide to simple and informative binding assays. Mol. Biol. Cell. 2010; 21:4061–4067. PubMed PMC
Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25:402–408. PubMed
Panjkovich A., Svergun D.I.. CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018; 34:1944–1946. PubMed PMC
Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T., Kikhney A.G., Hajizadeh N.R., Franklin J.M., Jeffries C.M. et al. .. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017; 50:1212–1225. PubMed PMC
Masliah G., Barraud P., Allain F.H.. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol. Life Sci. 2013; 70:1875–1895. PubMed PMC
Stefl R., Oberstrass F.C., Hood J.L., Jourdan M., Zimmermann M., Skrisovska L., Maris C., Peng L., Hofr C., Emeson R.B. et al. .. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell. 2010; 143:225–237. PubMed PMC
Dominguez C., Schubert M., Duss O., Ravindranathan S., Allain F.H.. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2011; 58:1–61. PubMed
Yadav D.K., Lukavsky P.J.. NMR solution structure determination of large RNA-protein complexes. Prog. Nucl. Magn. Reson. Spectrosc. 2016; 97:57–81. PubMed
Gan J.H., Tropea J.E., Austin B.P., Court D.L., Waugh D.S., Ji X.H.. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell. 2006; 124:355–366. PubMed
Dugre-Brisson S., Elvira G., Boulay K., Chatel-Chaix L., Mouland A.J., DesGroseillers L.. Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 2005; 33:4797–4812. PubMed PMC
Ferrandon D., Koch I., Westhof E., Nusslein-Volhard C.. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3′UTR-STAUFEN ribonucleoprotein particles. EMBO J. 1997; 16:1751–1758. PubMed PMC
Heber S., Gaspar I., Tants J.N., Gunther J., Moya S.M.F., Janowski R., Ephrussi A., Sattler M., Niessing D.. Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nat. Commun. 2019; 10:1659–1674. PubMed PMC
Valentini E., Kikhney A.G., Previtali G., Jeffries C.M., Svergun D.I.. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015; 43:D357–D363. PubMed PMC
Lukavsky P.J., Kim I., Otto G.A., Puglisi J.D.. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 2003; 10:1033–1038. PubMed
A Simple Protocol for Visualization of RNA-Protein Complexes by Atomic Force Microscopy
Dicer structure and function: conserved and evolving features