A Simple Protocol for Visualization of RNA-Protein Complexes by Atomic Force Microscopy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
39781608
PubMed Central
PMC11713223
DOI
10.1002/cpz1.70084
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, RNA–protein complex formation, Staufen,
- MeSH
- mikroskopie atomárních sil * metody MeSH
- proteiny vázající RNA * chemie metabolismus MeSH
- RNA * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny vázající RNA * MeSH
- RNA * MeSH
Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges. Here, we describe a simple and reliable method to visualize positively charged proteins bound to RNA that does not require metallic cations. This method allowed us to effectively detect and visualize Staufen-RNA complexes by height or logarithmic stiffness. The study of the mechanical properties is particularly important in the case of protein-coated RNA complexes, where RNA cannot be detected by height channel. In any case, it is necessary to compare AFM data with the data derived from other techniques like nuclear magnetic resonance, X-ray crystallography, cryogenic electron microscopy, and small-angle X-ray scattering. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Preparation and visualization of RNA-protein complex.
Central European Institute of Technology Masaryk University Brno Czech Republic
Czech Metrology Institute Brno Czech Republic
National Center of Biomolecular Research Brno Czech Republic
Zobrazit více v PubMed
Binnig, G. , Quate, C. F. , & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930–933. 10.1103/PhysRevLett.56.930 PubMed DOI
Chang, W. H. , Huang, S. H. , Lin, H. H. , Chung, S. C. , & Tu, I. P. (2021). Cryo‐EM analyses permit visualization of structural polymorphism of biological macromolecules. Frontiers in Bioinformatics, 1, 788308. 10.3389/fbinf.2021.788308 PubMed DOI PMC
DesGroseillers, L. , & Lemieux, N. (1996). Localization of a human double‐stranded RNA‐binding protein gene (STAU) to band 20q13.1 by fluorescence in situ hybridization. Genomics, 36(3), 527–529. 10.1006/geno.1996.0499 PubMed DOI
Ding, J. (2023). High‐resolution atomic force microscopy imaging of RNA molecules in solution. Methods in Molecular Biology, 2568, 133–145. 10.1007/978-1-0716-2687-0_9 PubMed DOI
Ding, J. , Lee, Y. T. , Bhandari, Y. , Schwieters, C. D. , Fan, L. , Yu, P. , Tarosov, S. G. , Stagno, J. R. , Ma, B. , Nussinov, R. , Rein, A. , Zhang, J. , & Wang, Y. X. (2023). Visualizing RNA conformational and architectural heterogeneity in solution. Nature Communications, 14(1), 714. 10.1038/s41467-023-36184-x PubMed DOI PMC
Gowravaram, M. , Schwarz, J. , Khilji, S. K. , Urlaub, H. , & Chakrabarti, S. (2019). Insights into the assembly and architecture of a Staufen‐mediated mRNA decay (SMD)‐competent mRNP. Nature Communications, 10(1), 5054. 10.1038/s41467-019-13080-x PubMed DOI PMC
Guaita, M. , Watters, S. C. , & Loerch, S. (2022). Recent advances and current trends in cryo‐electron microscopy. Current Opinion in Structural Biology, 77, 102484. 10.1016/j.sbi.2022.102484 PubMed DOI PMC
Heath, G. R. , Kots, E. , Robertson, J. L. , Lansky, S. , Khelashvili, G. , Weinstein, H. , & Scheuring, S. (2021). Localization atomic force microscopy. Nature, 594(7863), 385–390. 10.1038/s41586-021-03551-x PubMed DOI PMC
Kagra, D. , Jangra, R. , & Sharma, P. (2022). Exploring the nature of hydrogen bonding between RNA and proteins: A comprehensive analysis of RNA: Protein complexes. ChemPhysChem, 23(2), e202100731. 10.1002/cphc.202100731 PubMed DOI
LeBlanc, S. , Wilkins, H. , Li, Z. , Kaur, P. , Wang, H. , & Erie, D. A. (2017). Using atomic force microscopy to characterize the conformational properties of proteins and protein‐DNA complexes that carry out DNA repair. Methods in Enzymology, 592, 187–212. 10.1016/bs.mie.2017.04.004 PubMed DOI PMC
Müller, D. J. , Engel, A. , Carrascosa, J. L. , & Vélez, M. (1997). The bacteriophage phi29 head‐tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO Journal, 16(10), 2547–2553. 10.1093/emboj/16.10.2547 PubMed DOI PMC
Nečas, D. , & Klapetek, P. (2012). Gwyddion: An open‐source software for SPM data analysis. Central European Journal of Physics, 10, 181–188. 10.2478/s11534-011-0096-2 DOI
Nwanochie, E. , & Uversky, V. N. (2019). Structure determination by single‐particle cryo‐electron microscopy: Only the sky (and Intrinsic Disorder) is the limit. International Journal of Molecular Sciences, 20(17), 4186. 10.3390/ijms20174186 PubMed DOI PMC
Park, E. , & Maquat, L. E. (2013). Staufen‐mediated mRNA decay. Wiley Interdisciplinary Reviews RNA, 4(4), 423–435. 10.1002/wrna.1168 PubMed DOI PMC
Pleshakova, T. O. , Bukharina, N. S. , Archakov, A. I. , & Ivanov, Y. D. (2018). Atomic force microscopy for protein detection and their physicoсhemical characterization. International Journal of Molecular Sciences, 19(4), 1142. 10.3390/ijms19041142 PubMed DOI PMC
Plevka, P. , Battisti, A. J. , Winkler, D. C. , Tars, K. , Holdaway, H. A. , Bator, C. M. , & Rossmann, M. G. (2012). Sample preparation induced artifacts in cryo‐electron tomographs. Microscopy and Microanalysis, 18(5), 1043–1048. 10.1017/S1431927612001298 PubMed DOI PMC
Rice, W. J. , Cheng, A. , Noble, A. J. , Eng, E. T. , Kim, L. Y. , Carragher, B. , & Potter, C. S. (2018). Routine determination of ice thickness for cryo‐EM grids. Journal of Structural Biology, 204(1), 38–44. 10.1016/j.jsb.2018.06.007 PubMed DOI PMC
Schön, P. (2018). Atomic force microscopy of RNA: State of the art and recent advancements. Seminars in Cell & Developmental Biology, 73, 209–219. 10.1016/j.semcdb.2017.08.040 PubMed DOI
Schön, P. , Luda, S. , & Lyubchenko, Y. L. (2013). Atomic force microscopy of RNA: Imaging and beyond. In Guo P. & Haque F. (Eds.), RNA nanotechnology and therapeutics (pp. 237–257). Boca Raton, FL: CRC Press (Taylor & Francis).
Shlyakhtenko, L. S. , Gall, A. A. , & Lyubchenko, Y. L. (2013). Mica functionalization for imaging of DNA and protein‐DNA complexes with atomic force microscopy. Methods in Molecular Biology, 931, 295–312. 10.1007/978-1-62703-056-4_14 PubMed DOI PMC
Sokolov, I. (2007). Atomic force microscopy in cancer cell research. In Nalwa H. S. & Webster T. (Eds.), Cancer nanotechnology (pp 1–17). Valencia, CA: American Scientific Publishers.
Vicidomini, G. , Bianchini, P. , & Diaspro, A. (2018). STED super‐resolved microscopy. Nature Methods, 15(3), 173–182. 10.1038/nmeth.4593 PubMed DOI
Xu, J. , Ma, H. , & Liu, Y. (2017). Stochastic Optical Reconstruction Microscopy (STORM). Current Protocols in Cytometry, 81, 12.46.1–12.46.27. 10.1002/cpcy.23 PubMed DOI PMC
Yadav, D. K. , Zigáčková, D. , Zlobina, M. , Klumpler, T. , Beaumont, C. , Kubíčková, M. , Vaňáčová, Š. , & Lukavsky, P. J. (2020). Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Research, 48(4), 2091–2106. 10.1093/nar/gkz1163 PubMed DOI PMC
Zhang, K. , Julius, D. , & Cheng, Y. (2021). Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 184(20), 5138–5150. e12. 10.1016/j.cell.2021.08.012 PubMed DOI PMC
Zhang, K. H. , Zou, Y. J. , Shan, M. M. , Pan, Z. N. , Ju, J. Q. , Liu, J. C. , Ji, Y. M. , & Sun, S. C. (2024). Arf1 GTPase Regulates Golgi‐Dependent G2/M Transition and Spindle Organization in Oocyte Meiosis. Advance Science, 11(4), e2303009. 10.1002/advs.202303009 PubMed DOI PMC