Cell-free DNA in plasma as an essential immune system regulator

. 2020 Oct 15 ; 10 (1) : 17478. [epub] 20201015

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33060738
Odkazy

PubMed 33060738
PubMed Central PMC7566599
DOI 10.1038/s41598-020-74288-2
PII: 10.1038/s41598-020-74288-2
Knihovny.cz E-zdroje

The cell-free DNA (cfDNA) is always present in plasma, and it is biomarker of growing interest in prenatal diagnostics as well as in oncology and transplantology for therapy efficiency monitoring. But does this cfDNA have a physiological role? Here we show that cfDNA presence and clearance in plasma of healthy individuals plays an indispensable role in immune system regulation. We exposed THP1 cells to healthy individuals' plasma with (NP) and without (TP) cfDNA. In cells treated with NP, we found elevated expression of genes whose products maintain immune system homeostasis. Exposure of cells to TP triggered an innate immune response (IIR), documented particularly by elevated expression of pro-inflammatory interleukin 8. The results of mass spectrometry showed a higher abundance of proteins associated with IIR activation due to the regulation of complement cascade in cells cultivated with TP. These expression profiles provide evidence that the presence of cfDNA and its clearance in plasma of healthy individuals regulate fundamental mechanisms of the inflammation process and tissue homeostasis. The detailed understanding how neutrophil extracellular traps and their naturally occurring degradation products affect the performance of immune system is of crucial interest for future medical applications.

Zobrazit více v PubMed

Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 1944;79:137–158. doi: 10.1084/jem.79.2.137. PubMed DOI PMC

Mandel P, Metais P. Comptes rendus des seances de la Societe de biologie et de ses filiales. Sci. Res. 1948;142:241–243. PubMed

Stroun M, Mathon C-C, Stroun J. Modifications transmitted to the offspring, provoked by heterograft in'Solanum melongena'. Arch. Sci. 1963;16:225–245.

Aucamp J, Bronkhorst AJ, Badenhorst CP, Pretorius PJ. A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cell. Mol. Life Sci. 2016;73:4355–4381. doi: 10.1007/s00018-016-2370-3. PubMed DOI PMC

Tan E, Kunkel H. Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J. Immunol. 1966;96:464–471. PubMed

Lo YM, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–487. doi: 10.1016/S0140-6736(97)02174-0. PubMed DOI

Diaz LA, Jr, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014;32:579–586. doi: 10.1200/JCO.2012.45.2011. PubMed DOI PMC

Badeau M, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst. Rev. 2017;11:CD011767. PubMed PMC

Volik S, Alcaide M, Morin RD, Collins C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol. Cancer Res. 2016;14:898–908. doi: 10.1158/1541-7786.MCR-16-0044. PubMed DOI

Grskovic M, et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J. Mol. Diagn. 2016;18:890–902. doi: 10.1016/j.jmoldx.2016.07.003. PubMed DOI

Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. doi: 10.1016/j.cell.2015.11.050. PubMed DOI PMC

Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell. Biochem. Funct. 2010;28:529–538. doi: 10.1002/cbf.1690. PubMed DOI

Yu SC, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin. Chem. 2013;59:1228–1237. doi: 10.1373/clinchem.2013.203679. PubMed DOI

Garcia Moreira V, de la Cera Martinez T, Gago Gonzalez E, Prieto Garcia B, Alvarez Menendez FV. Increase in and clearance of cell-free plasma DNA in hemodialysis quantified by real-time PCR. Clin. Chem. Lab. Med. 2006;44:1410–1415. doi: 10.1515/CCLM.2006.252. PubMed DOI

Meng W, et al. Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediators Inflamm. 2012;2012:149560–149568. doi: 10.1155/2012/149560. PubMed DOI PMC

Thierry AR, Roch B. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin. Sci Lond. 2020;134:1295–1300. doi: 10.1042/CS20200531. PubMed DOI

Ortiz-Prado, E. et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagn. Microbiol. Infect. Dis.98, 115094 (2020). PubMed PMC

Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342:863–866. doi: 10.1126/science.1242255. PubMed DOI PMC

Freitas-Mesquita AL, et al. Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps. Mol. Biochem. Parasitol. 2019;229:6–14. doi: 10.1016/j.molbiopara.2019.02.004. PubMed DOI

Atamaniuk J, Kopecky C, Skoupy S, Saemann MD, Weichhart T. Apoptotic cell-free DNA promotes inflammation in haemodialysis patients. Nephrol. Dial. Transplant. 2012;27:902–905. doi: 10.1093/ndt/gfr695. PubMed DOI

Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x. PubMed DOI PMC

Phillippe M. Cell-free fetal DNA—A trigger for parturition. N. Engl. J. Med. 2014;370:2534–2536. doi: 10.1056/NEJMcibr1404324. PubMed DOI

Horinek A, et al. Cell-free fetal DNA in maternal plasma during physiological single male pregnancies: Methodology issues and kinetics. Fetal Diagn. Ther. 2008;24:15–21. doi: 10.1159/000132400. PubMed DOI

Waldvogel Abramowski S, et al. Cell-free nucleic acids are present in blood products and regulate genes of innate immune response. Transfusion. 2018;58:1671–168. doi: 10.1111/trf.14613. PubMed DOI

Tsuchiya S, et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1) Int. J. Cancer. 1980;26:171–176. doi: 10.1002/ijc.2910260208. PubMed DOI

Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–174. doi: 10.1007/s13238-016-0250-0. PubMed DOI PMC

Martins AS, Alves I, Helguero L, Domingues MR, Neves BM. The unfolded protein response in homeostasis and modulation of mammalian immune cells. Int. Rev. Immunol. 2016;35:457–476. doi: 10.3109/08830185.2015.1110151. PubMed DOI

Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625. PubMed DOI PMC

Kuilman T, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–1031. doi: 10.1016/j.cell.2008.03.039. PubMed DOI

Barra GB, et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin. Biochem. 2015;48:976–981. doi: 10.1016/j.clinbiochem.2015.02.014. PubMed DOI

Lee C-H, Kim Y-J, Jang J-H, Park J-W. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology. 2016;27:085101. doi: 10.1088/0957-4484/27/8/085101. PubMed DOI

Chaigne-Delalande B, Lenardo MJ. Divalent cation signaling in immune cells. Trends Immunol. 2014;35:332–344. doi: 10.1016/j.it.2014.05.001. PubMed DOI PMC

Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS ONE. 2017;12:e0183915. doi: 10.1371/journal.pone.0183915. PubMed DOI PMC

Yokoi A, et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 2019;5:eaax8849. doi: 10.1126/sciadv.aax8849. PubMed DOI PMC

Bryzgunova O, Laktionov P. Generation of blood circulating DNAs: the sources, peculiarities of circulation and structure. Biochem. Moscow Suppl. Ser. B Biomed. Chem. 2014;8:203–219. doi: 10.1134/S1990750814030020. PubMed DOI

Jonsson JI, Xiang Z, Pettersson M, Lardelli M, Nilsson G. Distinct and regulated expression of Notch receptors in hematopoietic lineages and during myeloid differentiation. Eur. J. Immunol. 2001;31:3240–3247. doi: 10.1002/1521-4141(200111)31:11<3240::AID-IMMU3240>3.0.CO;2-E. PubMed DOI

Hu X, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity. 2008;29:691–703. doi: 10.1016/j.immuni.2008.08.016. PubMed DOI PMC

Kim MJ, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 2016;12:1272–1291. doi: 10.1080/15548627.2016.1183081. PubMed DOI PMC

Meng J, et al. ARRDC4 regulates enterovirus 71-induced innate immune response by promoting K63 polyubiquitination of MDA5 through TRIM65. Cell Death Dis. 2017;8:e2866. doi: 10.1038/cddis.2017.257. PubMed DOI PMC

Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 2001;19:623–655. doi: 10.1146/annurev.immunol.19.1.623. PubMed DOI

Xie F, Ye L, Ta M, Zhang L, Jiang WG. MTSS1: A multifunctional protein and its role in cancer invasion and metastasis. Front. Biosci. 2011;3:621–631. doi: 10.2741/s175. PubMed DOI

Zhang P, et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 2015;25:1093–1107. doi: 10.1038/cr.2015.109. PubMed DOI PMC

Lin YW, et al. Eotaxin-2 induces monocytic apoptosis in patients who have undergone coronary artery bypass surgery and in THP-1 cells in vitro regulated by thrombomodulin. Am. J. Transl. Res. 2018;10:3133–3149. PubMed PMC

Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017;188:183–194. doi: 10.1111/cei.12952. PubMed DOI PMC

Zinkova A, Brynychova I, Svacina A, Jirkovska M, Korabecna M. Cell-free DNA from human plasma and serum differs in content of telomeric sequences and its ability to promote immune response. Sci. Rep. 2017;7:2591–2598. doi: 10.1038/s41598-017-02905-8. PubMed DOI PMC

Brynychova I, Zinkova A, Hoffmanova I, Korabecna M, Dankova P. Immunoregulatory properties of cell-free DNA in plasma of celiac disease patients—A pilot study. Autoimmunity. 2019;52:88–94. doi: 10.1080/08916934.2019.1608965. PubMed DOI

Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol. Med. 2018;24:49–65. doi: 10.1016/j.molmed.2017.11.002. PubMed DOI

Yu J, Zhang Y, Yan J, Kahkoska AR, Gu Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm. 2018;544:350–357. doi: 10.1016/j.ijpharm.2017.11.064. PubMed DOI PMC

Papayannopoulos V. Infection: microbial nucleases turn immune cells against each other. Curr. Biol. 2014;24:R123–R125. doi: 10.1016/j.cub.2013.12.027. PubMed DOI

Höglund L, Reichard P. Nucleotidase activities in soluble and membrane fractions of three different mammalian cell lines. Exp. Cell Res. 1990;190:204–208. doi: 10.1016/0014-4827(90)90186-E. PubMed DOI

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD 39 and CD 73: novel checkpoint inhibitor targets. Immunol. Rev. 2017;276:121–144. doi: 10.1111/imr.12528. PubMed DOI PMC

Hampson P, et al. Neutrophil dysfunction, immature granulocytes, and cell-free DNA are early biomarkers of sepsis in burn-injured patients: A prospective observational cohort study. Ann. Surg. 2017;265:1241–1249. doi: 10.1097/SLA.0000000000001807. PubMed DOI

Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 2013;35:513–530. doi: 10.1007/s00281-013-0384-6. PubMed DOI PMC

Korabecna M, Tesar V. NETosis provides the link between activation of neutrophils on hemodialysis membrane and comorbidities in dialyzed patients. Inflamm. Res. 2017;66:369–378. doi: 10.1007/s00011-016-1010-6. PubMed DOI PMC

Hughes CS, et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014;10:751–717. doi: 10.15252/msb.20145625. PubMed DOI PMC

Hebert AS, et al. The one hour yeast proteome. Mol. Cell. Proteomics. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Jassal B, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2019;48:D498–D503. PubMed PMC

Krämer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular monitoring of lung allograft health: is it ready for routine clinical use?

. 2023 Dec 31 ; 32 (170) : . [epub] 20231122

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace