Molecular monitoring of lung allograft health: is it ready for routine clinical use?
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print
Typ dokumentu časopisecké články, přehledy
PubMed
37993125
PubMed Central
PMC10663940
DOI
10.1183/16000617.0125-2023
PII: 32/170/230125
Knihovny.cz E-zdroje
- MeSH
- alografty MeSH
- imunosupresiva terapeutické užití MeSH
- lidé MeSH
- plíce * chirurgie MeSH
- rejekce štěpu diagnóza genetika prevence a kontrola MeSH
- transplantace plic * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- imunosupresiva MeSH
Maintenance of long-term lung allograft health in lung transplant recipients (LTRs) requires a fine balancing act between providing sufficient immunosuppression to reduce the risk of rejection whilst at the same time not over-immunosuppressing individuals and exposing them to the myriad of immunosuppressant drug side-effects that can cause morbidity and mortality. At present, lung transplant physicians only have limited and rather blunt tools available to assist them with this task. Although therapeutic drug monitoring provides clinically useful information about single time point and longitudinal exposure of LTRs to immunosuppressants, it lacks precision in determining the functional level of immunosuppression that an individual is experiencing. There is a significant gap in our ability to monitor lung allograft health and therefore tailor optimal personalised immunosuppression regimens. Molecular diagnostics performed on blood, bronchoalveolar lavage or lung tissue that can detect early signs of subclinical allograft injury, differentiate rejection from infection or distinguish cellular from humoral rejection could offer clinicians powerful tools in protecting lung allograft health. In this review, we look at the current evidence behind molecular monitoring in lung transplantation and ask if it is ready for routine clinical use. Although donor-derived cell-free DNA and tissue transcriptomics appear to be the techniques with the most immediate clinical potential, more robust data are required on their performance and additional clinical value beyond standard of care.
Institute of Transplantation Newcastle Upon Tyne Hospitals NHS Trust Newcastle Upon Tyne UK
Newcastle University Translational and Clinical Research Institute Newcastle upon Tyne UK
Zobrazit více v PubMed
The lungs at the frontlines of immunity. Nat Immunol 2015; 16: 17. doi:10.1038/ni.3069 PubMed DOI
Graham CN, Watson C, Barlev A, et al. . Mean lifetime survival estimates following solid organ transplantation in the US and UK. J Med Econ 2022; 25: 230–237. doi:10.1080/13696998.2022.2033050 PubMed DOI
van der Mark SC, Hoek RAS, Hellemons ME. Developments in lung transplantation over the past decade. Eur Respir Rev 2020; 29: 190132. doi:10.1183/16000617.0132-2019 PubMed DOI PMC
Meyer KC, Raghu G, Verleden GM, et al. . An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J 2014; 44: 1479–1503. doi:10.1183/09031936.00107514 PubMed DOI
Verleden GM, Glanville AR, Lease ED, et al. . Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment–a consensus report from the pulmonary council of the ISHLT. J Heart Lung Transplant 2019; 38: 493–503. doi:10.1016/j.healun.2019.03.009 PubMed DOI
Bos S, Vos R, Van Raemdonck DE, et al. . Survival in adult lung transplantation: where are we in 2020? Curr Opin Organ Transplant 2020; 25: 268–273. doi:10.1097/MOT.0000000000000753 PubMed DOI
Martinu T, Koutsokera A, Benden C, et al. . ISHLT consensus on standardization of bronchoalveolar lavage in lung transplantation. J Heart Lung Transplant 2019; 38: S120–S121. doi:10.1016/j.healun.2019.01.283 PubMed DOI PMC
Stewart S, Fishbein MC, Snell GI, et al. . Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant 2007; 26: 1229–1242. doi:10.1016/j.healun.2007.10.017 PubMed DOI
Tosi D, Carrinola R, Morlacchi LC, et al. . Surveillance transbronchial biopsy program to evaluate acute rejection after lung transplantation: a single institution experience. Transplant Proc 2019; 51: 198–201. doi:10.1016/j.transproceed.2018.04.073 PubMed DOI
Bhorade S, Husain A, Liao C, et al. . Interobserver variability in grading transbronchial lung biopsy specimens after lung transplantation. Chest 2013; 143: 1717–1724. doi:10.1378/chest.12-2107 PubMed DOI
Berry G, Burke M, Andersen C, et al. . Pathology of pulmonary antibody-mediated rejection: 2012 update from the Pathology Council of the ISHLT. J Heart Lung Transplant 2013; 32: 14–21. doi:10.1016/j.healun.2012.11.005 PubMed DOI
Roux A, Bendib Le Lan I, Holifanjaniaina S, et al. . Antibody-mediated rejection in lung transplantation: clinical outcomes and donor-specific antibody characteristics. Am J Transplant 2016; 16: 1216–1228. doi:10.1111/ajt.13589 PubMed DOI
Levine DJ, Glanville AR, Aboyoun C, et al. . Antibody-mediated rejection of the lung: a consensus report of the international society for heart and lung transplantation. J Heart Lung Transplant 2016; 35: 397–406. doi:10.1016/j.healun.2016.01.1223 PubMed DOI
Rosenheck JP, Keller BC, Fehringer G, et al. . Why cell-free DNA can be a “game changer” for lung allograft monitoring for rejection and infection. Curr Pulmonol Rep 2022; 11: 75–85. doi:10.1007/s13665-022-00292-8 PubMed DOI PMC
Kustanovich A, Schwartz R, Peretz T, et al. . Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20: 1057–1067. doi:10.1080/15384047.2019.1598759 PubMed DOI PMC
Meddeb R, Dache ZAA, Thezenas S, et al. . Quantifying circulating cell-free DNA in humans. Sci Rep 2019; 9: 5220. doi:10.1038/s41598-019-41593-4 PubMed DOI PMC
Dengu F. Next-generation sequencing methods to detect donor-derived cell-free DNA after transplantation. Transplant Rev 2020; 34: 100542. doi:10.1016/j.trre.2020.100542 PubMed DOI
Sorbini M, Togliatto G, Mioli F, et al. . Validation of a simple, rapid, and cost-effective method for acute rejection monitoring in lung transplant recipients. Transpl Int 2022; 35: 10546. doi:10.3389/ti.2022.10546 PubMed DOI PMC
Oellerich M, Shipkova M, Asendorf T, et al. . Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: results from a prospective observational study. Am J Transplant 2019; 19: 3087–3099. doi:10.1111/ajt.15416 PubMed DOI PMC
Tsuji N, Agbor-Enoh S. Cell-free DNA beyond a biomarker for rejection: biological trigger of tissue injury and potential therapeutics. J Heart Lung Transplant 2021; 40: 405–413. doi:10.1016/j.healun.2021.03.007 PubMed DOI
Korabecna M, Zinkova A, Brynychova I, et al. . Cell-free DNA in plasma as an essential immune system regulator. Sci Rep 2020; 10: 17478. doi:10.1038/s41598-020-74288-2 PubMed DOI PMC
Tanaka S, Sugimoto S, Kurosaki T, et al. . Donor-derived cell-free DNA is associated with acute rejection and decreased oxygenation in primary graft dysfunction after living donor-lobar lung transplantation. Sci Rep 2018; 8: 15366. doi:10.1038/s41598-018-33848-3 PubMed DOI PMC
Jang MK, Tunc I, Berry GJ, et al. . Donor-derived cell-free DNA accurately detects acute rejection in lung transplant patients, a multicenter cohort study. J Heart Lung Transplant 2021; 40: 822–830. doi:10.1016/j.healun.2021.04.009 PubMed DOI PMC
Agbor-Enoh S, Wang Y, Tunc I, et al. . Donor-derived cell-free DNA predicts allograft failure and mortality after lung transplantation. EBioMedicine 2019; 40: 541–553. doi:10.1016/j.ebiom.2018.12.029 PubMed DOI PMC
Knight SR, Thorne A, Lo Faro ML. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. a systematic review. Transplantation 2019; 103: 273–283. doi:10.1097/TP.0000000000002482 PubMed DOI
Keller M, Agbor-Enoh S. Cell-free DNA in lung transplantation: research tool or clinical workhorse? Curr Opin Organ Transplant 2022; 27: 177–183. doi:10.1097/MOT.0000000000000979 PubMed DOI PMC
Keller MB, Meda R, Fu S, et al. . Comparison of donor-derived cell-free DNA between single versus double lung transplant recipients. Am J Transplant 2022; 22: 2451–2457. doi:10.1111/ajt.17039 PubMed DOI PMC
Khush KK, De Vlaminck I, Luikart H, et al. . Donor-derived, cell-free DNA levels by next-generation targeted sequencing are elevated in allograft rejection after lung transplantation. ERJ Open Res 2021; 7: 00462-2020. doi:10.1183/23120541.00462-2020 PubMed DOI PMC
Keller M, Sun J, Mutebi C, et al. . Donor-derived cell-free DNA as a composite marker of acute lung allograft dysfunction in clinical care. J Heart Lung Transplant 2022; 41: 458–466. doi:10.1016/j.healun.2021.12.009 PubMed DOI
Pedini P, Coiffard B, Cherouat N, et al. . Clinical relevance of cell-free DNA quantification and qualification during the first month after lung transplantation. Front Immunol 2023; 14: 1183949. doi:10.3389/fimmu.2023.1183949 PubMed DOI PMC
De Vlaminck I, Martin L, Kertesz M, et al. . Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci USA 2015; 112: 13336–13341. doi:10.1073/pnas.1517494112 PubMed DOI PMC
Rosenheck JP, Ross DJ, Botros M, et al. . Clinical validation of a plasma donor-derived cell-free DNA assay to detect allograft rejection and injury in lung transplant. Transplant Direct 2022; 8: e1317. doi:10.1097/TXD.0000000000001317 PubMed DOI PMC
Agbor-Enoh S, Jackson AM, Tunc I, et al. . Late manifestation of alloantibody-associated injury and clinical pulmonary antibody-mediated rejection: evidence from cell-free DNA analysis. J Heart Lung Transplant 2018; 37: 925–932. doi:10.1016/j.healun.2018.01.1305 PubMed DOI
Wolf-Doty TK, Mannon RB, Poggio ED, et al. . Dynamic response of donor-derived cell-free DNA following treatment of acute rejection in kidney allografts. Kidney360 2021; 2: 729–736. doi:10.34067/KID.0000042021 PubMed DOI PMC
Hinojosa RJ, Chaffin K, Gillespie M, et al. . Donor-derived cell-free DNA may confirm real-time response to treatment of acute rejection in renal transplant recipients. Transplantation 2019; 103: e61. doi:10.1097/TP.0000000000002579 PubMed DOI
Ju C, Xu X, Zhang J, et al. . Application of plasma donor-derived cell free DNA for lung allograft rejection diagnosis in lung transplant recipients. BMC Pulm Med 2023; 23: 37. doi:10.1186/s12890-022-02229-y PubMed DOI PMC
Bazemore K, Permpalung N, Mathew J, et al. . Elevated cell-free DNA in respiratory viral infection and associated lung allograft dysfunction. Am J Transplant 2022; 22: 2560–2570. doi:10.1111/ajt.17125 PubMed DOI
Levine DJ, Demko ZP, Ross DJ. Variability in plasma donor-derived cell-free DNA levels with CLAD more than 5-years after lung transplantation: pilot data. Transplant Rep 2022; 7: 100106. doi:10.1016/j.tpr.2022.100106 DOI
Yang JYC, Verleden SE, Zarinsefat A, et al. . Cell-free DNA and CXCL10 derived from bronchoalveolar lavage predict lung transplant survival. J Clin Med 2019; 8: 241. doi:10.3390/jcm8020241 PubMed DOI PMC
Bu L, Gupta G, Pai A, et al. . Clinical outcomes from the assessing donor-derived cell-free DNA monitoring insights of kidney allografts with longitudinal surveillance (ADMIRAL) study. Kidney Int 2022; 101: 793–803. doi:10.1016/j.kint.2021.11.034 PubMed DOI
Hino S, Miyata H. Torque teno virus (TTV): current status. Rev Med Virol 2007; 17: 45–57. doi:10.1002/rmv.524 PubMed DOI
Redondo N, Navarro D, Aguado JM, et al. . Viruses, friends, and foes: the case of torque teno virus and the net state of immunosuppression. Transpl Infect Dis 2022; 24: e13778. doi:10.1111/tid.13778 PubMed DOI
Rezahosseini O, Drabe CH, Sørensen SS, et al. . Torque-teno virus viral load as a potential endogenous marker of immune function in solid organ transplantation. Transplant Rev 2019; 33: 137–144. doi:10.1016/j.trre.2019.03.004 PubMed DOI
Görzer I, Haloschan M, Jaksch P, et al. . Plasma DNA levels of torque teno virus and immunosuppression after lung transplantation. J Heart Lung Transplant 2014; 33: 320–323. doi:10.1016/j.healun.2013.12.007 PubMed DOI
Görzer I, Jaksch P, Kundi M, et al. . Pre-transplant plasma torque teno virus load and increase dynamics after lung transplantation. PLoS One 2015; 10: e0122975. doi:10.1371/journal.pone.0122975 PubMed DOI PMC
Jaksch P, Kundi M, Görzer I, et al. . Torque teno virus as a novel biomarker targeting the efficacy of immunosuppression after lung transplantation. J Infect Dis 2018; 218: 1922–1928. doi:10.1093/infdis/jiy452 PubMed DOI
Frye BC, Bierbaum S, Falcone V, et al. . Kinetics of torque teno virus–DNA plasma load predict rejection in lung transplant recipients. Transplantation 2019; 103: 815–822. doi:10.1097/TP.0000000000002436 PubMed DOI
Nordén R, Magnusson J, Lundin A, et al. . Quantification of torque teno virus and Epstein–Barr virus is of limited value for predicting the net state of immunosuppression after lung transplantation. Open Forum Infect Dis 2018; 5: ofy050. doi:10.1093/ofid/ofy050 PubMed DOI PMC
Hoek RA, Verschuuren EA, de Vries RD, et al. . High torque tenovirus (TTV) load before first vaccine dose is associated with poor serological response to COVID-19 vaccination in lung transplant recipients. J Heart Lung Transplant 2022; 41: 765–772. doi:10.1016/j.healun.2022.03.006 PubMed DOI PMC
Gallais F, Renaud-Picard B, Solis M, et al. . Torque teno virus DNA load as a predictive marker of antibody response to a three-dose regimen of COVID-19 mRNA-based vaccine in lung transplant recipients. J Heart Lung Transplant 2022; 41: 1429–1439. doi:10.1016/j.healun.2022.07.008 PubMed DOI PMC
Gottlieb J, Reuss A, Mayer K, et al. . Viral load-guided immunosuppression after lung transplantation (VIGILung)—study protocol for a randomized controlled trial. Trials 2021; 22: 48. doi:10.1186/s13063-020-04985-w PubMed DOI PMC
Agbor-Enoh S, Oellerich M, Wu A, et al. . Molecular approaches to transplant monitoring; is the horizon here? Clin Chem 2021; 67: 1443–1449. doi:10.1093/clinchem/hvab183 PubMed DOI
Bumgarner R. DNA microarrays: types, applications and their future. Curr Protoc Mol Biol 2013; 101: 22.1.1–22.1.11. doi:10.1002/0471142727.mb2201s101 PubMed DOI PMC
Halloran KM, Parkes MD, Chang J, et al. . Molecular assessment of rejection and injury in lung transplant biopsies. J Heart Lung Transplant 2019; 38: 504–513. doi:10.1016/j.healun.2019.01.1317 PubMed DOI
Halloran K, Parkes MD, Timofte I, et al. . Molecular T-cell-mediated rejection in transbronchial and mucosal lung transplant biopsies is associated with future risk of graft loss. J Heart Lung Transplant 2020; 39: 1327–1337. doi:10.1016/j.healun.2020.08.013 PubMed DOI
Lande J, Patil J, Li N, et al. . Novel insights into lung transplant rejection by microarray analysis. Proc Am Thorac Soc 2007; 4: 44–51. doi:10.1513/pats.200605-110JG PubMed DOI PMC
Jones NK, Conway Morris A, Curran MD, et al. . Evaluating the use of a 22-pathogen TaqMan array card for rapid diagnosis of respiratory pathogens in intensive care. J Med Microbiol 2020; 69: 971–978. doi:10.1099/jmm.0.001218 PubMed DOI
Parkes MD, Halloran K, Hirji A, et al. . Transcripts associated with chronic lung allograft dysfunction in transbronchial biopsies of lung transplants. Am J Transplant 2022; 22: 1054–1072. doi:10.1111/ajt.16895 PubMed DOI
Halloran K, Mackova M, Parkes MD, et al. . The molecular features of chronic lung allograft dysfunction in lung transplant airway mucosa. J Heart Lung Transplant 2022; 41: 1689–1699. doi:10.1016/j.healun.2022.08.014 PubMed DOI
Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, et al. . Microarray experiments and factors which affect their reliability. Biol Direct 2015; 10: 46. doi:10.1186/s13062-015-0077-2 PubMed DOI PMC
Randhawa PS. The molecular microscope diagnostic system (MMDx) in transplantation: a pathologist's perspective. Am J Transplant 2020; 20: 1965–1966. doi:10.1111/ajt.15887 PubMed DOI
Halloran PF, Reeve J, Madill-Thomsen KS, et al. . The trifecta study: comparing plasma levels of donor-derived cell-free DNA with the molecular phenotype of kidney transplant biopsies. J Am Soc Nephrol 2022; 33: 387–400. doi:10.1681/ASN.2021091191 PubMed DOI PMC
Park S, Guo K, Heilman RL, et al. . Combining blood gene expression and cellfree DNA to diagnose subclinical rejection in kidney transplant recipients. Clin J Am Soc Nephrol 2021; 16: 1539–1551. doi:10.2215/CJN.05530421 PubMed DOI PMC
Wang Y, Wang J-Y, Schnieke A, et al. . Advances in single-cell sequencing: insights from organ transplantation. Mil Med Res 2021; 8: 45. doi:10.1186/s40779-021-00336-1 PubMed DOI PMC
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20: 21–37. doi:10.1038/s41580-018-0045-7 PubMed DOI PMC
Hoefel G, Tay H, Foster P. MicroRNAs in lung diseases. Chest 2019; 156: 991–1000. doi:10.1016/j.chest.2019.06.008 PubMed DOI
Palleschi A, Gaudioso G, Edefonti V, et al. . Bronchoalveolar lavage-microRNAs are potential novel biomarkers of outcome after lung transplantation. Transplant Direct 2020; 6: e547. doi:10.1097/TXD.0000000000000994 PubMed DOI PMC
Ouyang T, Liu Z, Han Z, et al. . MicroRNA detection specificity: recent advances and future perspective. Anal Chem 2019; 91: 3179–3186. doi:10.1021/acs.analchem.8b05909 PubMed DOI
Zhang W, Zhou T, Ma S-F, et al. . MicroRNAs implicated in dysregulation of gene expression following human lung transplantation. Transl Respir Med 2013; 1: 12. doi:10.1186/2213-0802-1-12 PubMed DOI PMC
Ladak SS, Ward C, Ali S. The potential role of microRNAs in lung allograft rejection. J Heart Lung Transplant 2016; 35: 550–559. doi:10.1016/j.healun.2016.03.018 PubMed DOI
Budding K, Rossato M, van de Graaf EA, et al. . Serum miRNAs as potential biomarkers for the bronchiolitis obliterans syndrome after lung transplantation. Transpl Immunol 2017; 42: 1–4. doi:10.1016/j.trim.2017.04.002 PubMed DOI
Shiotani T, Sugimoto S, Tomioka Y, et al. . Diagnostic value of circulating microRNA-21 in chronic lung allograft dysfunction after bilateral cadaveric and living-donor lobar lung transplantation. Heliyon 2023; 9: e14903. doi:10.1016/j.heliyon.2023.e14903 PubMed DOI PMC
Bozzini S, Pandolfi L, Rossi E, et al. . MiRNAs potentially involved in post lung transplant-obliterative bronchiolitis: the role of miRNA-21-5p. Cells 2021; 10: 688. doi:10.3390/cells10030688 PubMed DOI PMC
Bozzini S, Del Fante C, Morosini M, et al. . Mechanisms of action of extracorporeal photopheresis in the control of bronchiolitis obliterans syndrome (BOS): involvement of circulating miRNAs. Cells 2022; 11: 1117. doi:10.3390/cells11071117 PubMed DOI PMC
Benazzo A, Bozzini S, Auner S, et al. . Differential expression of circulating miRNAs after alemtuzumab induction therapy in lung transplantation. Sci Rep 2022; 12: 7072. doi:10.1038/s41598-022-10866-w PubMed DOI PMC
de Gonzalo-Calvo D, Pérez-Boza J, Curado J, et al. . Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin Transl Med 2022; 12: e585. doi:10.1002/ctm2.585 PubMed DOI PMC
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet 2019; 10: 478. doi:10.3389/fgene.2019.00478 PubMed DOI PMC
Wagner W. How to translate DNA methylation biomarkers into clinical practice. Front Cell Dev Biol 2022; 10: 854797. doi:10.3389/fcell.2022.854797 PubMed DOI PMC
Bell CG, Lowe R, Adams PD, et al. . DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019; 20: 249. doi:10.1186/s13059-019-1824-y PubMed DOI PMC
Legaki E, Arsenis C, Taka S, et al. . DNA methylation biomarkers in asthma and rhinitis: are we there yet? Clin Transl Allergy 2022; 12: e12131. doi:10.1002/clt2.12131 PubMed DOI PMC
Benincasa G, DeMeo DL, Glass K, et al. . Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J 2021; 57: 2003406. doi:10.1183/13993003.03406-2020 PubMed DOI
Dugger DT, Calabrese DR, Gao Y, et al. . Lung allograft epithelium DNA methylation age is associated with graft chronologic age and primary graft dysfunction. Front Immunol 2021; 12: 704172. doi:10.3389/fimmu.2021.704172 PubMed DOI PMC
Jang M, Singh K, Andargie T, et al. . Genome-wide DNA methylation analysis to define pulmonary antibody-mediated rejection (AMR) treatment response. J Heart Lung Transplant 2022; 41: S39. doi:10.1016/j.healun.2022.01.088 DOI
Agbor-Enoh S, Seifuddin F, Pirooznia M, et al. . Pulmonary antibody-mediated rejection (AMR) accelerates aging-evidence from whole genome DNA methylation sequencing. J Heart Lung Transplant 2019; 38: Suppl., S138. doi:10.1016/j.healun.2019.01.328 DOI
Cristoferi I, Giacon TA, Boer K, et al. . The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review. Clin Epigenetics 2022; 14: 20. doi:10.1186/s13148-022-01241-7 PubMed DOI PMC
Peters FS, Manintveld OC, Betjes MGH, et al. . Clinical potential of DNA methylation in organ transplantation. J Heart Lung Transplant 2016; 35: 843–850. doi:10.1016/j.healun.2016.02.007 PubMed DOI
Vasco M, Benincasa G, Fiorito C, et al. . Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update. Transplant Rev 2021; 35: 100609. doi:10.1016/j.trre.2021.100609 PubMed DOI
Edgar JR. Q&A: What are exosomes, exactly? BMC Biol 2016; 14: 46. doi:10.1186/s12915-016-0268-z PubMed DOI PMC
Wang N, Wang Q, Du T, et al. . The potential roles of exosomes in chronic obstructive pulmonary disease. Front Med 2021; 7: 618506. doi:10.3389/fmed.2020.618506 PubMed DOI PMC
Yang Y, Liu Y, Chai Y, et al. . Exosomes in pathogenesis, diagnosis, and treatment of pulmonary fibrosis. Front Pharmacol 2022; 13: 927653. doi:10.3389/fphar.2022.927653 PubMed DOI PMC
King's College London . Improving the early detection of lung cancer by combining exosomal analysis of hypoxia with standard of care imaging (LungExoDETECT) Date last accessed: 17 June 2022. Date last updated: 16 November 2020. https://clinicaltrials.gov/study/NCT04629079
Weiss M. Immune modulation by stem cell derived exosomes in critically ill COVID-19. Date last accessed: 17 June 2022. Date last updated: 2 February 2022. https://clinicaltrials.gov/study/NCT05191381
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019; 20: 4684. doi:10.3390/ijms20194684 PubMed DOI PMC
Gunasekaran M, Xu Z, Nayak DK, et al. . Donor-derived exosomes with lung self-antigens in human lung allograft rejection. Am J Transplant 2017; 17: 474–484. doi:10.1111/ajt.13915 PubMed DOI PMC
Zaffiri L, Shah RJ, Stearman RS, et al. . Collagen type-V is a danger signal associated with primary graft dysfunction in lung transplantation. Transpl Immunol 2019; 56: 101224. doi:10.1016/j.trim.2019.101224 PubMed DOI
Tiriveedhi V, Gautam B, Sarma NJ, et al. . Pre-transplant antibodies to kα1 tubulin and collagen-v in lung transplantation: clinical correlations. J Heart Lung Transplant 2013; 32: 807–814. doi:10.1016/j.healun.2013.06.003 PubMed DOI PMC
Habertheuer A, Ram C, Schmierer M, et al. . Circulating donor lung-specific exosome profiles enable noninvasive monitoring of acute rejection in a rodent orthotopic lung transplantation model. Transplantation 2022; 106: 754–766. doi:10.1097/TP.0000000000003820 PubMed DOI
Gunasekaran M, Bansal S, Ravichandran R, et al. . Respiratory viral infection in lung transplantation induces exosomes that trigger chronic rejection. J Heart Lung Transplant 2020; 39: 379–388. doi:10.1016/j.healun.2019.12.009 PubMed DOI PMC
Bansal S, Fleming T, Perincheri S, et al. . Lung transplant recipients with SARS-CoV-2 infection induce circulating exosomes with SARS-CoV-2 spike protein S2 which are immunogenic in mice. J Heart Lung Transplant 2022; 41: S134. doi:10.1016/j.healun.2022.01.314 DOI
Sharma M, Gunasekaran M, Ravichandran R, et al. . Circulating exosomes with lung self-antigens as a biomarker for chronic lung allograft dysfunction: a retrospective analysis. J Heart Lung Transplant 2020; 39: 1210–1219. doi:10.1016/j.healun.2020.07.001 PubMed DOI PMC
Ravichandran R, Bansal S, Rahman M, et al. . The role of donor-derived exosomes in lung allograft rejection. Hum Immunol 2019; 80: 588–594. doi:10.1016/j.humimm.2019.03.012 PubMed DOI PMC
Hsin MKY, Liu M. Commentary: it's time for exosomes to get the limelight in lung transplant. J Thorac Cardiovasc Surg 2021; 161: e136–e137. doi:10.1016/j.jtcvs.2020.04.155 PubMed DOI
Mazzatenta A, Pokorski M, Sartucci F, et al. . Volatile organic compounds (VOCs) fingerprint of Alzheimer's disease. Respir Physiol Neurobiol 2015; 209: 81–84. doi:10.1016/j.resp.2014.10.001 PubMed DOI
Mazzatenta A, Pokorski M, Di Giulio C. Volatile organic compounds (VOCs) in exhaled breath as a marker of hypoxia in multiple chemical sensitivity. Physiol Rep 2021; 9: e15034. doi:10.14814/phy2.15034 PubMed DOI PMC
Wijbenga N, Hoek RAS, Mathot BJ, et al. . The potential of electronic nose technology in lung transplantation: a proof of principle. ERJ Open Res 2022; 8: 00048-2022. doi:10.1183/23120541.00048-2022 PubMed DOI PMC
Rai SN, Das S, Pan J, et al. . Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples. PloS One 2022; 17: e0277431. doi:10.1371/journal.pone.0277431 PubMed DOI PMC
Binson VA, Subramoniam M, Mathew L. Detection of COPD and lung cancer with electronic nose using ensemble learning methods. Clin Chim Acta 2021; 523: 231–238. doi:10.1016/j.cca.2021.10.005 PubMed DOI
Zang X, Monge ME, Gaul DA, et al. . Early detection of cystic fibrosis acute pulmonary exacerbations by exhaled breath condensate metabolomics. J Proteome Res 2020; 19: 144–152. doi:10.1021/acs.jproteome.9b00443 PubMed DOI
Verleden SE, Hendriks JMH, Lauwers P, et al. . Biomarkers for chronic lung allograft dysfunction: ready for prime time? Transplantation 2023; 107: 341–350. doi:10.1097/TP.0000000000004270 PubMed DOI PMC
Brosseau C, Danger R, Durand M, et al. . Blood CD9+ B cell, a biomarker of bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2019; 19: 3162–3175. doi:10.1111/ajt.15532 PubMed DOI
Smirnova NF, Riemondy K, Bueno M, et al. . Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation. JCI Insight 2022; 7: e156648. doi:10.1172/jci.insight.156648 PubMed DOI PMC
Durand M, Lacoste P, Danger R, et al. . High circulating CD4+CD25hiFOXP3+ T-cell sub-population early after lung transplantation is associated with development of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2018; 37: 770–781. doi:10.1016/j.healun.2018.01.1306 PubMed DOI
Ius F, Salman J, Knoefel A-K, et al. . Increased frequency of CD4+ CD25high CD127low T cells early after lung transplant is associated with improved graft survival – a retrospective study. Transpl Int 2020; 33: 503–516. doi:10.1111/tri.13568 PubMed DOI
Brugière O, Mouren D, Trichereau J, et al. . Chronic lung allograft dysfunction is associated with an early increase of circulating cytotoxic CD4+CD57+ILT2+ T cells, selectively inhibited by the immune check-point HLA-G. J Heart Lung Transplant 2022; 41: 626–640. doi:10.1016/j.healun.2022.01.013 PubMed DOI
Newton CA, Kozlitina J, Lines JR, et al. . Telomere length in patients with pulmonary fibrosis associated with chronic lung allograft dysfunction and post-lung transplantation survival. J Heart Lung Transplant 2017; 36: 845–853. doi:10.1016/j.healun.2017.02.005 PubMed DOI PMC
Courtwright AM, Lamattina AM, Takahashi M, et al. . Shorter telomere length following lung transplantation is associated with clinically significant leukopenia and decreased chronic lung allograft dysfunction-free survival. ERJ Open Res 2020; 6: 00003-2020. doi:10.1183/23120541.00003-2020 PubMed DOI PMC
Courtwright AM, Fried S, Villalba JA, et al. . Association of donor and recipient telomere length with clinical outcomes following lung transplantation. PLoS One 2016; 11: e0162409. doi:10.1371/journal.pone.0162409 PubMed DOI PMC
Newton CA, Zhang D, Oldham JM, et al. . Telomere length and use of immunosuppressive medications in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019; 200: 336–347. doi:10.1164/rccm.201809-1646OC PubMed DOI PMC
Treatment Responses in Histologic Versus Molecular Diagnoses of Lung Rejection