Nanoscale imaging and control of altermagnetism in MnTe
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39663495
PubMed Central
PMC11634770
DOI
10.1038/s41586-024-08234-x
PII: 10.1038/s41586-024-08234-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators. Recently, altermagnetism has been proposed as a solution to these restrictions, as it shares the enabling time-reversal-symmetry-breaking characteristic of ferromagnetism, combined with the antiferromagnetic-like vanishing net magnetization1-4. So far, altermagnetic ordering has been inferred from spatially averaged probes4-19. Here we demonstrate nanoscale imaging of altermagnetic states from 100-nanometre-scale vortices and domain walls to 10-micrometre-scale single-domain states in manganese telluride (MnTe)2,7,9,14-16,18,20,21. We combine the time-reversal-symmetry-breaking sensitivity of X-ray magnetic circular dichroism12 with magnetic linear dichroism and photoemission electron microscopy to achieve maps of the local altermagnetic ordering vector. A variety of spin configurations are imposed using microstructure patterning and thermal cycling in magnetic fields. The demonstrated detection and controlled formation of altermagnetic spin configurations paves the way for future experimental studies across the theoretically predicted research landscape of altermagnetism, including unconventional spin-polarization phenomena, the interplay of altermagnetism with superconducting and topological phases, and highly scalable digital and neuromorphic spintronic devices3,14,22-24.
Diamond Light Source Harwell Science and Innovation Campus Didcot UK
Institut de Physique École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Institute of Physics Johannes Gutenberg University Mainz Germany
Max Planck Institute for Chemical Physics of Solids Dresden Germany
Max Planck Institute for the Physics of Complex Systems Dresden Germany
Nanoscale and Microscale Research Centre University of Nottingham Nottingham UK
Photon Science Division Paul Scherrer Institut Villigen Switzerland
School of Physics and Astronomy University of Nottingham Nottingham UK
Zobrazit více v PubMed
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv.6, eaaz8809 (2020). PubMed PMC
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X12, 031042 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X12, 040501 (2022).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater.7, 482–496 (2022).
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron.5, 735–743 (2022).
Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun.15, 4961 (2024). PubMed PMC
Gonzalez Betancourt, R. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett.130, 036702 (2023). PubMed
Tschirner, T. et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater.11, 101103 (2023).
Kluczyk, K. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B110, 155201 (2024).
Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun.14, 8240 (2023). PubMed PMC
Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv.10, eadn0479 (2024). PubMed PMC
Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett.132, 176701 (2024). PubMed
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv.10, eadj4883 (2024). PubMed PMC
Krempaskỳ, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature626, 517–522 (2024). PubMed PMC
Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett.132, 036702 (2024). PubMed
Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B109, 115102 (2024).
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun.15, 2116 (2024). PubMed PMC
Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Preprint at https://arxiv.org/abs/2401.09187 (2024). PubMed
Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. Preprint at https://arxiv.org/abs/2402.04995 (2024).
Lovesey, S., Khalyavin, D. & Van Der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B108, 174437 (2023).
Mazin, I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B107, L100418 (2023).
Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett.132, 236701 (2024). PubMed
Beenakker, C. & Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B108, 075425 (2023).
Fernandes, R. M., De Carvalho, V. S., Birol, T. & Pereira, R. G. Topological transition from nodal to nodeless Zeeman splitting in altermagnets. Phys. Rev. B109, 024404 (2024).
Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature405, 767–769 (2000). PubMed
Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol.13, 362–365 (2018). PubMed
Chmiel, F. P. et al. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater.17, 581–585 (2018). PubMed
Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Sci. Adv.8, eabn3535 (2022). PubMed PMC
Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature590, 74–79 (2021). PubMed
Amin, O. et al. Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature. Nat. Nanotechnol.18, 849–853 (2023). PubMed PMC
Gomonay, E. & Loktev, V. Spintronics of antiferromagnetic systems. Low Temp. Phys.40, 17–35 (2014).
Folven, E. et al. Effects of nanostructuring and substrate symmetry on antiferromagnetic domain structure in LaFeO3 thin films. Phys. Rev. B84, 220410 (2011).
Reimers, S. et al. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun.13, 724 (2022). PubMed PMC
Reimers, S. et al. Magnetic domain engineering in antiferromagnetic CuMnAs and Mn2Au. Phys. Rev. Appl.21, 064030 (2024).
Witte, K. et al. From 2D STXM to 3D imaging: soft X-ray laminography of thin specimens. Nano Lett.20, 1305–1314 (2020). PubMed