Atomically sharp domain walls in an antiferromagnet

. 2022 Apr ; 8 (13) : eabn3535. [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35353557

The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field-insensitive neuromorphic functionalities.

Zobrazit více v PubMed

Hellman F., Hoffmann A., Tserkovnyak Y., Beach G. S. D., Fullerton E. E., Leighton C., Donald A. H. M., Ralph D. C., Arena D. A., Dürr H. A., Fischer P., Grollier J., Heremans J. P., Jungwirth T., Kimel A. V., Koopmans B., Krivorotov I. N., May S. J., Petford-Long A. K., Rondinelli J. M., Samarth N., Schuller I. K., Slavin A. N., Stiles M. D., Tchernyshyov O., Thiaville A., Zink B. L., Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017). PubMed PMC

Parkin S., Yang S.-H., Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015). PubMed

Lloyd S. J., Loudon J. C., Midgley P. A., Measurement of magnetic domain wall width using energy-filtered Fresnel images. J. Microsc. 207, 118–128 (2002). PubMed

Bode M., Vedmedenko E. Y., von Bergmann K., Kubetzka A., Ferriani P., Heinze S., Wiesendanger R., Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477–481 (2006). PubMed

Enayat M., Sun Z., Singh U. R., Aluru R., Schmaus S., Yaresko A., Liu Y., Lin C., Tsurkan V., Loidl A., Deisenhofer J., Wahl P., Real-space imaging of the atomic-scale magnetic structure of Fe1+yTe. Science 345, 653–656 (2014). PubMed

Zhao H., Manna S., Porter Z., Chen X., Uzdejczyk A., Moodera J., Wang Z., Wilson S. D., Zeljkovic I., Atomic-scale fragmentation and collapse of antiferromagnetic order in a doped Mott insulator. Nat. Phys. 15, 1267–1272 (2019).

Wadley P., Howells B., Železný J., Andrews C., Hills V., Campion R. P., Novák V., Olejník K., Maccherozzi F., Dhesi S. S., Martin S. Y., Wagner T., Wunderlich J., Freimuth F., Mokrousov Y., Kuneš J., Chauhan J. S., Grzybowski M. J., Rushforth A. W., Edmonds K. W., Gallagher B. L., Jungwirth T., Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). PubMed

Wang M., Andrews C., Reimers S., Amin O. J., Wadley P., Campion R. P., Poole S. F., Felton J., Edmonds K. W., Gallagher B. L., Rushforth A. W., Makarovsky O., Gas K., Sawicki M., Kriegner D., Zubáč J., Olejník K., Novák V., Jungwirth T., Shahrokhvand M., Zeitler U., Dhesi S. S., Maccherozzi F., Spin flop and crystalline anisotropic magnetoresistance in CuMnAs. Phys. Rev. B 101, 094429 (2020).

Dekkers N. H., de Lang H., Differential phase contrast in a STEM. Optik (Jena) 41, 452–456 (1974).

Chapman J., Batson P., Waddell E., Ferrier R., The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214 (1978). PubMed

Müller K., Krause F. F., Béché A., Schowalter M., Galioit V., Löffler S., Verbeeck J., Zweck J., Schattschneider P., Rosenauer A., Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat. Commun. 5, 5653 (2014). PubMed PMC

Shibata K., Iwasaki J., Kanazawa N., Aizawa S., Tanigaki T., Shirai M., Nakajima T., Kubota M., Kawasaki M., Park H. S., Shindo D., Nagaosa N., Tokura Y., Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015). PubMed

Lohr M., Schregle R., Jetter M., Wächter C., Müller-Caspary K., Mehrtens T., Rosenauer A., Pietzonka I., Strassburg M., Zweck J., Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures. Phys. Status Solidi B 253, 140 (2016).

Lazić I., Bosch E. G., Lazar S., Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). PubMed

Matsumoto T., So Y. G., Kohno Y., Sawada H., Ikuhara Y., Shibata N., Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Sci. Adv. 2, e1501280 (2016). PubMed PMC

Yücelen E., Lazić I., Bosch E. G. T., Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018). PubMed PMC

Chen C., Li H., Seki T., Yin D., Sanchez-Santolino G., Inoue K., Shibata N., Ikuhara Y., Direct determination of atomic structure and magnetic coupling of magnetite twin boundaries. ACS Nano 12, 2662–2668 (2018). PubMed

Hachtel J. A., Idrobo J. C., Chi M., Sub-angstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv. Struct. Chem. Imaging 4, 10 (2018). PubMed PMC

Edström A., Lubk A., Rusz J., Quantum mechanical treatment of atomic-resolution differential phase contrast imaging of magnetic materials. Phys. Rev. B 99, 174428 (2019).

Wadley P., Reimers S., Grzybowski M. J., Andrews C., Wang M., Chauhan J. S., Gallagher B. L., Campion R. P., Edmonds K. W., Dhesi S. S., Maccherozzi F., Novak V., Wunderlich J., Jungwirth T., Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018). PubMed

Železný J., Gao H., Výborný K., Zemen J., Mašek J., Manchon A., Wunderlich J., Sinova J., Jungwirth T., Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). PubMed

Kašpar Z., Surýnek M., Zubáč J., Krizek F., Novák V., Campion R. P., Wörnle M. S., Gambardella P., Marti X., Němec P., Edmonds K. W., Reimers S., Amin O. J., Maccherozzi F., Dhesi S. S., Wadley P., Wunderlich J., Olejník K., Jungwirth T., Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 4, 30–37 (2021).

Janda T., Godinho J., Ostatnicky T., Pfitzner E., Ulrich G., Hoehl A., Reimers S., Soban Z., Metzger T., Reichlova H., Novák V., Campion R., Heberle J., Wadley P., Edmonds K., Amin O., Chauhan J., Dhesi S., Maccherozzi F., Otxoa R., Roy P., Olejnik K., Němec P., Jungwirth T., Kaestner B., Wunderlich J., Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mat. 4, 094413 (2020).

Müller-Caspary K., Krause F. F., Grieb T., Löffler S., Schowalter M., Béché A., Galioit V., Marquardt D., Zweck J., Schattschneider P., Verbeeck J., Rosenauer A., Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 178, 62–80 (2017). PubMed

Barthel J., Dr. Probe: A software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018). PubMed

Krizek F., Kašpar Z., Vetushka A., Kriegner D., Fiordaliso E. M., Michalicka J., Man O., Zubáč J., Brajer M., Hills V. A., Edmonds K. W., Wadley P., Campion R. P., Olejník K., Jungwirth T., Novák V., Molecular beam epitaxy of CuMnAs. Phys. Rev. Mat. 4, 014409 (2020).

Máca F., Kudrnovský J., Drchal V., Carva K., Baláž P., Turek I., Physical properties of the tetragonal CuMnAs: A first-principles study. Phys. Rev. B 96, 094406 (2017).

Železný J., Wadley P., Olejník K., Hoffmann A., Ohno H., Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

Němec P., Fiebig M., Kampfrath T., Kimel A. V., Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

Gomonay O., Baltz V., Brataas A., Tserkovnyak Y., Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).

L. Šmejkal, T. Jungwirth, in Topology in Magnetism, J. Zang, V. Cros, A. Hoffmann, Eds. (Springer International Publishing, 2018), pp. 267–298.

Duine R. A., Lee K.-J., Parkin S. S. P., Stiles M. D., Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018). PubMed PMC

Baltz V., Manchon A., Tsoi M., Moriyama T., Ono T., Tserkovnyak Y., Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

Siddiqui S. A., Sklenar J., Kang K., Gilbert M. J., Schleife A., Mason N., Hoffmann A., Metallic antiferromagnets. J. Appl. Phys. 128, 040904 (2020).

Zubáč J., Kašpar Z., Krizek F., Förster T., Campion R. P., Novák V., Jungwirth T., Olejník K., Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424 (2021).

Kurenkov A., Fukami S., Ohno H., Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).

Kimel A. V., Li M., Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mat. 4, 189–200 (2019).

Gomonay O., Jungwirth T., Sinova J., High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016). PubMed

Wadley P., Edmonds K. W., Shahedkhah M. R., Campion R. P., Gallagher B. L., Železný J., Kuneš J., Novák V., Jungwirth T., Saidl V., Němec P., Maccherozzi F., Dhesi S. S., Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 11147 (2017). PubMed PMC

C. Meyer (2019), Nion Swift (version 0.14.08), https://github.com/nion-software/nionswift.

Grzybowski M. J., Wadley P., Edmonds K. W., Beardsley R., Hills V., Campion R. P., Gallagher B. L., Chauhan J. S., Novak V., Jungwirth T., Maccherozzi F., Dhesi S. S., Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017). PubMed

Bürger J., Riedl T., Lindner J. K., Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 219, 113118 (2020). PubMed

P. Blaha, K. Schwarz, G. K. H. Medsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Edström A., Lubk A., Rusz J., Magnetic effects in the paraxial regime of elastic electron scattering. Phys. Rev. B 94, 174414 (2016).

Edström A., Lubk A., Rusz J., Elastic scattering of electron vortex beams in magnetic matter. Phys. Rev. Lett. 116, 127203 (2016). PubMed

Malis T., Cheng S., Egerton R., EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988). PubMed

Müller G. P., Hoffmann M., Dißelkamp C., Schürhoff D., Mavros S., Sallermann M., Kiselev N. S., Jónsson H., Blügel S., Spirit: Multifunctional framework for atomistic spin simulations. Phys. Rev. B 99, 224414 (2019).

Liechtenstein A., Katsnelson M., Antropov V., Gubanov V., Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Mag. Magnetic Mat. 67, 65–74 (1987).

Ebert H., Mankovsky S., Ködderitzsch D., Kelly P. J., Ab initio calculation of the gilbert damping parameter via the linear response formalism. Phys. Rev. Lett. 107, 066603 (2011). PubMed

P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, 2010).

H. Eschrig, M. Richter, I. Opahle, in Relativistic Electronic Structure Theory, P. Schwerdtfeger, Ed. (Elsevier, 2004), chap. 12, pp. 723–776.

Vosko S. H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

Wagenknecht D., Výborný K., Carva K., Turek I., Antiferromagnetic CuMnAs: Ab initio description of finite temperature magnetism and resistivity. J. Mag. Magnetic Mat. 513, 167078 (2020).

P. W. Ilja Turek, V. Drchal, J. Kudrnovský, M. Sob, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Springer, 1997).

Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). PubMed

Koepernik K., Eschrig H., Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).

Wadley P., Crespi A., Gázquez J., Roldán M. A., García P., Novak V., Campion R., Jungwirth T., Rinaldi C., Martí X., Holy V., Frontera C., Rius J., Obtaining the structure factors for an epitaxial film using Cu x-ray radiation. J. Appl. Cryst. 46, 1749–1754 (2013).

B. Ujfalussy, L. Szunyogh, P. Weinberger, J. Kollár, in Metalllic Alloys: Experimental and Theoretical Prospectives, J. Faulkner, R. Jordan, Eds. (NATO Advanced Study Institutes Series, 1994), p. 301.

Wildberger K., Zeller R., Dederichs P., Screened KKR-Green’s-function method for layered systems. Phys. Rev. B 55, 10074 (1997).

Eich F. G., Gross E. K., Transverse spin-gradient functional for noncollinear spin-density-functional theory. Phys. Rev. Lett. 111, 156401 (2013). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanoscale imaging and control of altermagnetism in MnTe

. 2024 Dec ; 636 (8042) : 348-353. [epub] 20241211

Defect-driven antiferromagnetic domain walls in CuMnAs films

. 2022 Feb 07 ; 13 (1) : 724. [epub] 20220207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...