Atomically sharp domain walls in an antiferromagnet
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35353557
PubMed Central
PMC8967221
DOI
10.1126/sciadv.abn3535
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field-insensitive neuromorphic functionalities.
Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
Department of Physics and Astronomy Uppsala University Box 516 75120 Uppsala Sweden
Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 ODE UK
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Institut de Ciencia de Materials de Barcelona Campus UAB 08193 Bellaterra Spain
Institut für Festkörper und Materialphysik Technische Universität Dresden 01062 Dresden Germany
MAX 4 Laboratory Lund University 22100 Lund Sweden
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Hellman F., Hoffmann A., Tserkovnyak Y., Beach G. S. D., Fullerton E. E., Leighton C., Donald A. H. M., Ralph D. C., Arena D. A., Dürr H. A., Fischer P., Grollier J., Heremans J. P., Jungwirth T., Kimel A. V., Koopmans B., Krivorotov I. N., May S. J., Petford-Long A. K., Rondinelli J. M., Samarth N., Schuller I. K., Slavin A. N., Stiles M. D., Tchernyshyov O., Thiaville A., Zink B. L., Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017). PubMed PMC
Parkin S., Yang S.-H., Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015). PubMed
Lloyd S. J., Loudon J. C., Midgley P. A., Measurement of magnetic domain wall width using energy-filtered Fresnel images. J. Microsc. 207, 118–128 (2002). PubMed
Bode M., Vedmedenko E. Y., von Bergmann K., Kubetzka A., Ferriani P., Heinze S., Wiesendanger R., Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477–481 (2006). PubMed
Enayat M., Sun Z., Singh U. R., Aluru R., Schmaus S., Yaresko A., Liu Y., Lin C., Tsurkan V., Loidl A., Deisenhofer J., Wahl P., Real-space imaging of the atomic-scale magnetic structure of Fe1+yTe. Science 345, 653–656 (2014). PubMed
Zhao H., Manna S., Porter Z., Chen X., Uzdejczyk A., Moodera J., Wang Z., Wilson S. D., Zeljkovic I., Atomic-scale fragmentation and collapse of antiferromagnetic order in a doped Mott insulator. Nat. Phys. 15, 1267–1272 (2019).
Wadley P., Howells B., Železný J., Andrews C., Hills V., Campion R. P., Novák V., Olejník K., Maccherozzi F., Dhesi S. S., Martin S. Y., Wagner T., Wunderlich J., Freimuth F., Mokrousov Y., Kuneš J., Chauhan J. S., Grzybowski M. J., Rushforth A. W., Edmonds K. W., Gallagher B. L., Jungwirth T., Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). PubMed
Wang M., Andrews C., Reimers S., Amin O. J., Wadley P., Campion R. P., Poole S. F., Felton J., Edmonds K. W., Gallagher B. L., Rushforth A. W., Makarovsky O., Gas K., Sawicki M., Kriegner D., Zubáč J., Olejník K., Novák V., Jungwirth T., Shahrokhvand M., Zeitler U., Dhesi S. S., Maccherozzi F., Spin flop and crystalline anisotropic magnetoresistance in CuMnAs. Phys. Rev. B 101, 094429 (2020).
Dekkers N. H., de Lang H., Differential phase contrast in a STEM. Optik (Jena) 41, 452–456 (1974).
Chapman J., Batson P., Waddell E., Ferrier R., The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214 (1978). PubMed
Müller K., Krause F. F., Béché A., Schowalter M., Galioit V., Löffler S., Verbeeck J., Zweck J., Schattschneider P., Rosenauer A., Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat. Commun. 5, 5653 (2014). PubMed PMC
Shibata K., Iwasaki J., Kanazawa N., Aizawa S., Tanigaki T., Shirai M., Nakajima T., Kubota M., Kawasaki M., Park H. S., Shindo D., Nagaosa N., Tokura Y., Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015). PubMed
Lohr M., Schregle R., Jetter M., Wächter C., Müller-Caspary K., Mehrtens T., Rosenauer A., Pietzonka I., Strassburg M., Zweck J., Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures. Phys. Status Solidi B 253, 140 (2016).
Lazić I., Bosch E. G., Lazar S., Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). PubMed
Matsumoto T., So Y. G., Kohno Y., Sawada H., Ikuhara Y., Shibata N., Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Sci. Adv. 2, e1501280 (2016). PubMed PMC
Yücelen E., Lazić I., Bosch E. G. T., Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018). PubMed PMC
Chen C., Li H., Seki T., Yin D., Sanchez-Santolino G., Inoue K., Shibata N., Ikuhara Y., Direct determination of atomic structure and magnetic coupling of magnetite twin boundaries. ACS Nano 12, 2662–2668 (2018). PubMed
Hachtel J. A., Idrobo J. C., Chi M., Sub-angstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv. Struct. Chem. Imaging 4, 10 (2018). PubMed PMC
Edström A., Lubk A., Rusz J., Quantum mechanical treatment of atomic-resolution differential phase contrast imaging of magnetic materials. Phys. Rev. B 99, 174428 (2019).
Wadley P., Reimers S., Grzybowski M. J., Andrews C., Wang M., Chauhan J. S., Gallagher B. L., Campion R. P., Edmonds K. W., Dhesi S. S., Maccherozzi F., Novak V., Wunderlich J., Jungwirth T., Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018). PubMed
Železný J., Gao H., Výborný K., Zemen J., Mašek J., Manchon A., Wunderlich J., Sinova J., Jungwirth T., Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). PubMed
Kašpar Z., Surýnek M., Zubáč J., Krizek F., Novák V., Campion R. P., Wörnle M. S., Gambardella P., Marti X., Němec P., Edmonds K. W., Reimers S., Amin O. J., Maccherozzi F., Dhesi S. S., Wadley P., Wunderlich J., Olejník K., Jungwirth T., Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 4, 30–37 (2021).
Janda T., Godinho J., Ostatnicky T., Pfitzner E., Ulrich G., Hoehl A., Reimers S., Soban Z., Metzger T., Reichlova H., Novák V., Campion R., Heberle J., Wadley P., Edmonds K., Amin O., Chauhan J., Dhesi S., Maccherozzi F., Otxoa R., Roy P., Olejnik K., Němec P., Jungwirth T., Kaestner B., Wunderlich J., Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mat. 4, 094413 (2020).
Müller-Caspary K., Krause F. F., Grieb T., Löffler S., Schowalter M., Béché A., Galioit V., Marquardt D., Zweck J., Schattschneider P., Verbeeck J., Rosenauer A., Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 178, 62–80 (2017). PubMed
Barthel J., Dr. Probe: A software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018). PubMed
Krizek F., Kašpar Z., Vetushka A., Kriegner D., Fiordaliso E. M., Michalicka J., Man O., Zubáč J., Brajer M., Hills V. A., Edmonds K. W., Wadley P., Campion R. P., Olejník K., Jungwirth T., Novák V., Molecular beam epitaxy of CuMnAs. Phys. Rev. Mat. 4, 014409 (2020).
Máca F., Kudrnovský J., Drchal V., Carva K., Baláž P., Turek I., Physical properties of the tetragonal CuMnAs: A first-principles study. Phys. Rev. B 96, 094406 (2017).
Železný J., Wadley P., Olejník K., Hoffmann A., Ohno H., Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).
Němec P., Fiebig M., Kampfrath T., Kimel A. V., Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).
Gomonay O., Baltz V., Brataas A., Tserkovnyak Y., Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).
L. Šmejkal, T. Jungwirth, in Topology in Magnetism, J. Zang, V. Cros, A. Hoffmann, Eds. (Springer International Publishing, 2018), pp. 267–298.
Duine R. A., Lee K.-J., Parkin S. S. P., Stiles M. D., Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018). PubMed PMC
Baltz V., Manchon A., Tsoi M., Moriyama T., Ono T., Tserkovnyak Y., Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Siddiqui S. A., Sklenar J., Kang K., Gilbert M. J., Schleife A., Mason N., Hoffmann A., Metallic antiferromagnets. J. Appl. Phys. 128, 040904 (2020).
Zubáč J., Kašpar Z., Krizek F., Förster T., Campion R. P., Novák V., Jungwirth T., Olejník K., Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424 (2021).
Kurenkov A., Fukami S., Ohno H., Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).
Kimel A. V., Li M., Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mat. 4, 189–200 (2019).
Gomonay O., Jungwirth T., Sinova J., High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016). PubMed
Wadley P., Edmonds K. W., Shahedkhah M. R., Campion R. P., Gallagher B. L., Železný J., Kuneš J., Novák V., Jungwirth T., Saidl V., Němec P., Maccherozzi F., Dhesi S. S., Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 11147 (2017). PubMed PMC
C. Meyer (2019), Nion Swift (version 0.14.08), https://github.com/nion-software/nionswift.
Grzybowski M. J., Wadley P., Edmonds K. W., Beardsley R., Hills V., Campion R. P., Gallagher B. L., Chauhan J. S., Novak V., Jungwirth T., Maccherozzi F., Dhesi S. S., Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017). PubMed
Bürger J., Riedl T., Lindner J. K., Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 219, 113118 (2020). PubMed
P. Blaha, K. Schwarz, G. K. H. Medsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).
Edström A., Lubk A., Rusz J., Magnetic effects in the paraxial regime of elastic electron scattering. Phys. Rev. B 94, 174414 (2016).
Edström A., Lubk A., Rusz J., Elastic scattering of electron vortex beams in magnetic matter. Phys. Rev. Lett. 116, 127203 (2016). PubMed
Malis T., Cheng S., Egerton R., EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988). PubMed
Müller G. P., Hoffmann M., Dißelkamp C., Schürhoff D., Mavros S., Sallermann M., Kiselev N. S., Jónsson H., Blügel S., Spirit: Multifunctional framework for atomistic spin simulations. Phys. Rev. B 99, 224414 (2019).
Liechtenstein A., Katsnelson M., Antropov V., Gubanov V., Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Mag. Magnetic Mat. 67, 65–74 (1987).
Ebert H., Mankovsky S., Ködderitzsch D., Kelly P. J., Ab initio calculation of the gilbert damping parameter via the linear response formalism. Phys. Rev. Lett. 107, 066603 (2011). PubMed
P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, 2010).
H. Eschrig, M. Richter, I. Opahle, in Relativistic Electronic Structure Theory, P. Schwerdtfeger, Ed. (Elsevier, 2004), chap. 12, pp. 723–776.
Vosko S. H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).
Wagenknecht D., Výborný K., Carva K., Turek I., Antiferromagnetic CuMnAs: Ab initio description of finite temperature magnetism and resistivity. J. Mag. Magnetic Mat. 513, 167078 (2020).
P. W. Ilja Turek, V. Drchal, J. Kudrnovský, M. Sob, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Springer, 1997).
Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). PubMed
Koepernik K., Eschrig H., Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).
Wadley P., Crespi A., Gázquez J., Roldán M. A., García P., Novak V., Campion R., Jungwirth T., Rinaldi C., Martí X., Holy V., Frontera C., Rius J., Obtaining the structure factors for an epitaxial film using Cu x-ray radiation. J. Appl. Cryst. 46, 1749–1754 (2013).
B. Ujfalussy, L. Szunyogh, P. Weinberger, J. Kollár, in Metalllic Alloys: Experimental and Theoretical Prospectives, J. Faulkner, R. Jordan, Eds. (NATO Advanced Study Institutes Series, 1994), p. 301.
Wildberger K., Zeller R., Dederichs P., Screened KKR-Green’s-function method for layered systems. Phys. Rev. B 55, 10074 (1997).
Eich F. G., Gross E. K., Transverse spin-gradient functional for noncollinear spin-density-functional theory. Phys. Rev. Lett. 111, 156401 (2013). PubMed