Defect-driven antiferromagnetic domain walls in CuMnAs films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
STU0201, MM22437-1 and NT27146-1
Diamond Light Source
TRR 173 - 268565370 (projects A03 and B12) and TRR 288 - 422213477 (project A09)
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
35132068
PubMed Central
PMC8821625
DOI
10.1038/s41467-022-28311-x
PII: 10.1038/s41467-022-28311-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
Central European Institute of Technology Brno University of Technology 612 00 Brno Czech Republic
Diamond Light Source Chilton OX11 0DE UK
Institut für Physik Johannes Gutenberg Universität Mainz 55099 Mainz Germany
Institute of Physics Czech Academy of Sciences 162 00 Praha 6 Prague Czech Republic
MAX 4 Laboratory Lund University 22100 Lund Sweden
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI
Železný J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Baldrati L, et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging. Phys. Rev. Lett. 2019;123:177201. doi: 10.1103/PhysRevLett.123.177201. PubMed DOI
Kašpar Z, et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 2021;4:30. doi: 10.1038/s41928-020-00506-4. DOI
Meer H, et al. Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 2021;21:114. doi: 10.1021/acs.nanolett.0c03367. PubMed DOI
Wadley P, et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 2018;13:362–365. doi: 10.1038/s41565-018-0079-1. PubMed DOI
Hubert, A. & Schäfer, R.
McCord J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D: Appl. Phys. 2015;48:333001. doi: 10.1088/0022-3727/48/33/333001. DOI
Menon KSR, et al. Surface antiferromagnetic domain imaging using low-energy unpolarized electrons. Phys. Rev. B. 2011;84:132402. doi: 10.1103/PhysRevB.84.132402. DOI
Scholl A, et al. Observation of antiferromagnetic domains in epitaxial thin films. Science. 2000;287:1014–1016. doi: 10.1126/science.287.5455.1014. PubMed DOI
Folven E, et al. Antiferromagnetic domain reconfiguration in embedded LaFeO3 thin film nanostructures. Nano Lett. 2010;10:4578–4583. doi: 10.1021/nl1025908. PubMed DOI
Bezencenet O, Bonamy D, Belkhou R, Ohresser P, Barbier A. Origin and tailoring of the antiferromagnetic domain structure in α-Fe2O3 thin films unraveled by statistical analysis of dichroic spectromicroscopy images. Phys. Rev. Lett. 2011;106:107201. doi: 10.1103/PhysRevLett.106.107201. PubMed DOI
Folven E, et al. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets. Phys. Rev. B. 2015;92:094421. doi: 10.1103/PhysRevB.92.094421. DOI
Khymyn R, Lisenkov I, Tiberkevich V, Ivanov BA, Slavin A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 2017;7:43705. doi: 10.1038/srep43705. PubMed DOI PMC
Gomonay O, Jungwirth T, Sinova J. Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and antidamping torques. Phys. Rev. B. 2018;98:104430. doi: 10.1103/PhysRevB.98.104430. DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Bodnar SY, et al. Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au. Phys. Rev. B. 2019;99:140409. doi: 10.1103/PhysRevB.99.140409. DOI
Janda T, et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 2020;4:094413. doi: 10.1103/PhysRevMaterials.4.094413. DOI
Krizek F, et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 2020;4:014409. doi: 10.1103/PhysRevMaterials.4.014409. DOI
Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Preprint at https://arxiv.org/abs/2012.00894 (2020). PubMed PMC
Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC
Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI
Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC
Wadley P, et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 2017;7:11147. doi: 10.1038/s41598-017-11653-8. PubMed DOI PMC
Stangl, J., Mocuta, C., Chamard, V. & Carbone, D.
Pietsch, U., Holy, V. & Baumbach, T.
Gomonay H, Loktev VM. Magnetostriction and magnetoelastic domains in antiferromagnets. J. Phys. C. 2002;14:3959–3971.
Bjorling A, et al. Ptychographic characterization of a coherent nanofocused X-ray beam. Opt. Express. 2020;28:5069–5076. doi: 10.1364/OE.386068. PubMed DOI
Johansson U, et al. NanoMAX: the hard X-ray nanoprobe beamline at the MAXIV Laboratory. J. Synchrotron Rad. 2021;28:1935–1947. doi: 10.1107/S1600577521008213. PubMed DOI PMC
Kriegner D, Wintersberger E, Stangl J. xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 2013;46:1162–1170. doi: 10.1107/S0021889813017214. PubMed DOI PMC
Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Nanoscale imaging and control of altermagnetism in MnTe
Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature