Defect-driven antiferromagnetic domain walls in CuMnAs films

. 2022 Feb 07 ; 13 (1) : 724. [epub] 20220207

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35132068

Grantová podpora
STU0201, MM22437-1 and NT27146-1 Diamond Light Source
TRR 173 - 268565370 (projects A03 and B12) and TRR 288 - 422213477 (project A09) Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 35132068
PubMed Central PMC8821625
DOI 10.1038/s41467-022-28311-x
PII: 10.1038/s41467-022-28311-x
Knihovny.cz E-zdroje

Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.

Zobrazit více v PubMed

Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI

Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI

Železný J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI

Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI

Baldrati L, et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging. Phys. Rev. Lett. 2019;123:177201. doi: 10.1103/PhysRevLett.123.177201. PubMed DOI

Kašpar Z, et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 2021;4:30. doi: 10.1038/s41928-020-00506-4. DOI

Meer H, et al. Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 2021;21:114. doi: 10.1021/acs.nanolett.0c03367. PubMed DOI

Wadley P, et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 2018;13:362–365. doi: 10.1038/s41565-018-0079-1. PubMed DOI

Hubert, A. & Schäfer, R.

McCord J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D: Appl. Phys. 2015;48:333001. doi: 10.1088/0022-3727/48/33/333001. DOI

Menon KSR, et al. Surface antiferromagnetic domain imaging using low-energy unpolarized electrons. Phys. Rev. B. 2011;84:132402. doi: 10.1103/PhysRevB.84.132402. DOI

Scholl A, et al. Observation of antiferromagnetic domains in epitaxial thin films. Science. 2000;287:1014–1016. doi: 10.1126/science.287.5455.1014. PubMed DOI

Folven E, et al. Antiferromagnetic domain reconfiguration in embedded LaFeO3 thin film nanostructures. Nano Lett. 2010;10:4578–4583. doi: 10.1021/nl1025908. PubMed DOI

Bezencenet O, Bonamy D, Belkhou R, Ohresser P, Barbier A. Origin and tailoring of the antiferromagnetic domain structure in α-Fe2O3 thin films unraveled by statistical analysis of dichroic spectromicroscopy images. Phys. Rev. Lett. 2011;106:107201. doi: 10.1103/PhysRevLett.106.107201. PubMed DOI

Folven E, et al. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets. Phys. Rev. B. 2015;92:094421. doi: 10.1103/PhysRevB.92.094421. DOI

Khymyn R, Lisenkov I, Tiberkevich V, Ivanov BA, Slavin A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 2017;7:43705. doi: 10.1038/srep43705. PubMed DOI PMC

Gomonay O, Jungwirth T, Sinova J. Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and antidamping torques. Phys. Rev. B. 2018;98:104430. doi: 10.1103/PhysRevB.98.104430. DOI

Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI

Bodnar SY, et al. Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au. Phys. Rev. B. 2019;99:140409. doi: 10.1103/PhysRevB.99.140409. DOI

Janda T, et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 2020;4:094413. doi: 10.1103/PhysRevMaterials.4.094413. DOI

Krizek F, et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 2020;4:014409. doi: 10.1103/PhysRevMaterials.4.014409. DOI

Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Preprint at https://arxiv.org/abs/2012.00894 (2020). PubMed PMC

Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC

Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI

Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC

Wadley P, et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 2017;7:11147. doi: 10.1038/s41598-017-11653-8. PubMed DOI PMC

Stangl, J., Mocuta, C., Chamard, V. & Carbone, D.

Pietsch, U., Holy, V. & Baumbach, T.

Gomonay H, Loktev VM. Magnetostriction and magnetoelastic domains in antiferromagnets. J. Phys. C. 2002;14:3959–3971.

Bjorling A, et al. Ptychographic characterization of a coherent nanofocused X-ray beam. Opt. Express. 2020;28:5069–5076. doi: 10.1364/OE.386068. PubMed DOI

Johansson U, et al. NanoMAX: the hard X-ray nanoprobe beamline at the MAXIV Laboratory. J. Synchrotron Rad. 2021;28:1935–1947. doi: 10.1107/S1600577521008213. PubMed DOI PMC

Kriegner D, Wintersberger E, Stangl J. xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 2013;46:1162–1170. doi: 10.1107/S0021889813017214. PubMed DOI PMC

Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanoscale imaging and control of altermagnetism in MnTe

. 2024 Dec ; 636 (8042) : 348-353. [epub] 20241211

Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature

. 2023 Aug ; 18 (8) : 849-853. [epub] 20230508

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...