Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films

. 2017 Sep 11 ; 7 (1) : 11147. [epub] 20170911

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28894219
Odkazy

PubMed 28894219
PubMed Central PMC5593844
DOI 10.1038/s41598-017-11653-8
PII: 10.1038/s41598-017-11653-8
Knihovny.cz E-zdroje

Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques.

Zobrazit více v PubMed

Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic Spintronics. Nature Nanotech. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI

Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nature Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI

Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI

Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI

Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nature Commun. 2017;8:15434. doi: 10.1038/ncomms15434. PubMed DOI PMC

Tang P, Zhou Q, Xu G, Zhang S-C. Dirac fermions in an antiferromagnetic semimetal. Nature Phys. 2016;12:1100–1104. doi: 10.1038/nphys3839. DOI

Šmejkal L, Železný J, Sinova J, Jungwirth T. Electrical control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI

Meiklejohn WH, Bean CP. New magnetic anisotropy. Phys. Rev. 1956;102:1413. doi: 10.1103/PhysRev.102.1413. DOI

Zhang W, Krishnan KM. Epitaxial exchange-bias systems: from fundamentals to future spin-orbitronics. Mat. Sci. Eng. R. 2016;105:1–20. doi: 10.1016/j.mser.2016.04.001. DOI

Morales R, et al. Role of the antiferromagnetic bulk spin structure on exchange bias. Phys. Rev. Lett. 2009;102:097201. doi: 10.1103/PhysRevLett.102.097201. PubMed DOI

Scholl A, Liberati M, Arenholz E, Ohldag H, Stohr J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 2004;92:247201. doi: 10.1103/PhysRevLett.92.247201. PubMed DOI

Ohldag H, et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 2003;91:017203. doi: 10.1103/PhysRevLett.91.017203. PubMed DOI

Wu J, et al. Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001) Phys. Rev. Lett. 2010;104:217204. doi: 10.1103/PhysRevLett.104.217204. PubMed DOI

Marti X, et al. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Phys. Rev. Lett. 2012;108:017201. doi: 10.1103/PhysRevLett.108.017201. PubMed DOI

Park BG, et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 2011;10:347–351. doi: 10.1038/nmat2983. PubMed DOI

Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC

Saidl V, et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nature Photon. 2017;11:91–96. doi: 10.1038/nphoton.2016.255. DOI

Wastlbauer G, Bland JAC. Structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Adv. Phys. 2005;54:137–219. doi: 10.1080/00018730500112000. DOI

Kunes J, Oppeneer PM. Anisotropic x-ray magnetic linear dichroism at the L2,3 edges of cubic Fe, Co, and Ni: ab initio calculations and model theory. Phys. Rev. B. 2003;67:024431. doi: 10.1103/PhysRevB.67.024431. DOI

Nolting F, et al. Anisotropy of the L2,3 x-ray magnetic linear dichroism of Fe films on GaAs: experiment and ab initio theory. Phys. Rev. B. 2010;82:184415. doi: 10.1103/PhysRevB.82.184415. DOI

Czekaj S, Nolting F, Heyderman LJ, Willmott PR, van der Laan G. Sign dependence of the x-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films. Phys. Rev. B. 2006;73:020401. doi: 10.1103/PhysRevB.73.020401. DOI

Arenholz E, van der Laan G, Chopdekar RV, Suzuki Y. Anisotropic x-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4. Phys. Rev. B. 2006;74:094407. doi: 10.1103/PhysRevB.74.094407. DOI

Arenholz E, van der Laan G, Chopdekar RV, Suzuki Y. Angle-dependent Ni2+ x-ray magnetic linear dichroism: interfacial coupling revisited. Phys. Rev. Lett. 2007;98:197201. doi: 10.1103/PhysRevLett.98.197201. PubMed DOI

Freeman AA, et al. Giant anisotropy in x-ray magnetic linear dichroism in (Ga,Mn)As. Phys. Rev. B. 2006;73:233303. doi: 10.1103/PhysRevB.73.233303. DOI

Bhatkar H, Snow RJ, Arenholz E, Idzerda YU. Elemental moment variation of bcc FexMn1−x on MgO(001) J. Magn. Magn. Mater. 2017;423:46–50. doi: 10.1016/j.jmmm.2016.09.060. DOI

Ruosi A, et al. Electron sampling depth and saturation effects in perovskite films investigated by soft x-ray absorption spectroscopy. Phys. Rev. B. 2014;90:125120. doi: 10.1103/PhysRevB.90.125120. DOI

Zelezny J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature

. 2023 Aug ; 18 (8) : 849-853. [epub] 20230508

Atomically sharp domain walls in an antiferromagnet

. 2022 Apr ; 8 (13) : eabn3535. [epub] 20220330

Defect-driven antiferromagnetic domain walls in CuMnAs films

. 2022 Feb 07 ; 13 (1) : 724. [epub] 20220207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...